Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems
Giaccomo Bighin1, Timur Tscherbul2, and Mikhail Lemeshko1
1Institute of Science and Technology Austria, 2University of Nevada, Reno

IMPURITIES AND ANGULAR MOMENTUM
Motivation for the study of composite impurities, i.e. impurities possessing angular momentum, comes from many different fields. They can be realized as:

- Molecules embedded into helium nanodroplets.
- Ultracold molecules and ions.
- Electronic excitations in Rydberg atoms.
- Angular momentum transfer from electrons to a crystal lattice.

Diagrammatic Monte Carlo

DIAGRAMS AND UPDATES
Moving particle: linear momentum circulating on lines.

Rotating particle: angular momentum circulating on lines.

The configuration space is larger than that of the Fröhlich polaron: in the diagram above \(j \) and \(\lambda \) can couple to give \(j' \) in many different ways. The configuration space is also essentially different: consider the second diagram below, angular momentum is not conserved on each phonon line (i.e. a phonon line subtracts 0 quanta of angular momentum, but gives back 2)...

The scheme allows us to visit all diagrams.

RESULTS

The ground-state energy, the energy of the first two excited states and the quasiparticle weight for the angulon are obtained by fitting the long-imaginary-time behaviour of \(G_j \) with

\[
G_j(\tau) = Z_j \exp(-E_j \tau)
\]

as a function of the dimensionless bath density \(\tilde{n} \). They are compared with the weak- and strong-coupling theories.

CONCLUSIONS

- A technique for molecular simulations using the DiagMC framework.
- Angular momentum and rotations can be described with DiagMC. The configuration space is bigger, and an additional update is needed.
- Works naturally in the thermodynamic limit and in continuous time: no finite-size effect, no systematic errors.
- Straightforward access to the Green’s function and to angular momentum properties: they are encoded in the formalism.

REFERENCES

The angulon quasiparticle: a quantum rotor dressed by a field of many-body excitations.

The Fröhlich polaron three updates are enough to explore all possible diagrams:

- Add update: adds a new arc to a diagram.
- Remove update: removes an arc from the diagram.
- Change update: modifies the total length of the diagram.

Works in continuous time and in the thermodynamic limit: no finite-size effects or systematic errors.

For the Fröhlich polaron three updates are enough to explore all possible diagrams:

- Add update: adds a new arc to a diagram.
- Remove update: removes an arc from the diagram.
- Change update: modifies the total length of the diagram.