MOLECULAR POLARITONICS 2019: Theoretical and Numerical Approaches

Suppression of photo-oxidation of organic dyes under strong plasmon-exciton coupling Timur Shegai

Chalmers University of Technology, Göteborg, SWEDEN

- Tel: (+46) 31 772 3123, e-mail: <u>timurs@chalmers.se</u> More information is on our website and Google scholar:
- <u>https://scholar.google.se/citations?user=btt8op4AAAAJ&hl=en</u>
- <u>http://www.chalmers.se/en/departments/physics/research/bionanophotonics/Pages/ShegaiGroup.aspx</u>

Light-matter interaction: Hamiltonian picture

CHALMERS

• Response of the driven system

$$\hat{\mathcal{H}} = \hbar \begin{pmatrix} \omega_{cav} - i\gamma_{cav}/2 & g \\ g & \omega_0 - i\gamma_0/2 \end{pmatrix},$$
$$\hbar g = \mathbf{E}_{vac} \mathbf{d}_{eg}$$

Ingredients = plasmons + molecules or 2D semiconductors

 $g \sim \sqrt{N} \mu_e / \sqrt{V}$

Ultracompact effective mode volume

Dye Molecules

Intense absorption bands and exciton transitions

strong coupling regime

To appear in Nature Comm.

Strong coupling in TDDFT:

 $g \propto \sqrt{N}$

Rossi et al, arXiv:1904.02097

Summary of activities on molecule-plasmon interactions:

Room T strong coupling with J-aggregates:

Zengin et al., PRL, 2015

Very strong coupling up to 500 meV: Wersäll et al., Nano Lett. (2017), *18*, 1777–1785

100× slow down of photo-oxidation: Munkhbat et al., Science Adv. (2018)

Polariton emission requires a change in the excited state dynamics:

- Long-lived intermediate states are necessary!
- Lifetime is tens of ps.

Theory: • Agranovich *et al*, **PRB**, (2003), 67, 085311

- Litinskaya et al, J. Lumin. (2004), 110, 364–372
- La Rocca *et al*, Feist *et al*, Herrera *et al*.

Anti-crossing in scattering vs PL:

 Photoluminescence requires detailed understanding of the excited state dynamics, which in these disordered systems is complex!

Wersäll et al., Nano Lett., 2017, 17, 551-558

(I) Excitation Wavelength dependence:

- Individual nanoprisms investigated in both DF scattering and PL inside cryostat T=77K here
- PL shows two peaks, one peak, or nothing depending on excitation wavelength
- Lower energy peak coincides with LP independently of excitation
- Upper energy peak is below UP

(II) Temperature dependence:

- Higher energy peak is due to exciton reservoir
- Lower energy peak follows LP exactly
- Peculiar behavior around Debye temperature for Ag (requires further understanding)
 Wersäll *et al.*, in preparat

Wersäll *et al.,* in preparation with F. Herrera

- J-aggregates are unstable...
- But in strong coupling regime, we see 100-fold supression of photo-oxidation rate. "Collective protection".

Coupled systems: splitting ~200-300meV

Related theory:

- 1) Galego et al. Nature Comm, (2016), 7, 13841
- 2) Herrera et al., PRL, (2016), 116, 238301
- 3) Matrtinez et al., ACS Photonics, (2018), 5, 167-176

Munkhbat *et al.*, Science Adv. 2018, 4, eaas9552

Role of Rabi splitting: much slower bleaching for

 All experimental conditions are exactly same

larger Rabi!

- Particles are about the same size
- Bleaching rates are extracted from the kinetics
- Broadband excitation (400-700nm)

12

Munkhbat et al., Science Adv. 2018, 4, eaas9552

Role of plasmon-exciton detuning: Detuning is extremely important!

- Red-detuned hybrids are much (100-fold) more stable than blue-detuned ones!
- This implies δ -dependent internal dynamics.
- Broadband excitation (400-700nm)

Dependence on excitation wavelength:

- Resonant UP excitation is the most harmful!
- Absorption at exciton resonance is not negligible

Munkhbat *et al.*, Science Adv. 2018, 4, eaas9552

- Photobleaching QY drops down very significantly (due to collective protection and short polariton lifetime)
- Dynamics can be derived assuming a set of rate equations

Summary of activities on TMDC-plasmon interactions:

Trions: Nano Lett. (2018), 18, 1777–1785

Confinement: *Nano Lett.*, **18**, 5938– 5945, (2018)

Hierarchical microcavitites:

Nano Lett. 19, 189-196, (2019).

Hierarchical microcavitites:

Collective effect

- Similar to intermixed Frenkel Wanier-Mott polaritons (Agranovich)
- Bisht et al., Nano Lett., 19, 189-196, (2019)

Plasmon-exciton-microcavity mixtures:

• Bisht et al. Nano Lett., 2019, 189–196

Multilayers of WSe₂ coupled to individual bipyramides:

Stührenberg et al., Nano Lett. (2018), 5938–5945

- Coupling to in a very localized region
- Extremely reproducible (hundreds of individual nanoparticles)!

Stührenberg et al., Nano Lett. (2018), 18, 5938–5945

Is it possible to visualize polaritons on nanoscale? Electron energy loss spectroscopy (EELS)

Yankovich et al, arXiv:1905.04067

Observation of anti-crossing in EELS signal:

Yankovich et al, arXiv:1905.04067

Observation of plexcitons in EELS with nanometer resolution:

Yankovich et al, arXiv:1905.04067

Self-hybridization in TMDC flakes

ACS Photonics, 6, 139-147, (2018)

Self-hybridization in TMDC flakes

Reflection from thin flakes

Is there a chance to increase the TMDC cavity Q factor?

 $\gamma_{cav} \approx 600 \text{ meV}$ $\gamma_X \approx 50 \text{ meV}$ "Splitting" $\cong 200 \text{ meV}$

ACS Photonics, 6, 139-147, (2018)

High-index TMDC nanodisks as nanoantennas

Optically resonant dielectric nanostructures

Arseniy I. Kuznetsov,¹ Andrey E. Miroshnichenko,² Mark L. Brongersma,^{3*} Yuri S. Kivshar,^{2*} Boris Luk'yanchuk^{1,4*}

• Si, Ge, GaAs, other

conventional semiconductors

Can we make use of WS₂ high refractive index and make a **nanoantenna** out of it?

Verre, Baranov, et al. Nat Nano (2019)

WS₂ nanodisk

WS₂ nanodisks as Mie resonators

DF spectra vs nanodisk radius

CHALMERS

• Scattering dip is the **anapole** state:

Verre, Baranov, et al. Nat Nano (2019)

A-exciton

9

 Rabi oscillations between the exciton and the narrow optical mode in a nanoobject made of a single material

ring (a. u.)

Conclusions:

- (1) TDDFT can be used to observe plexcitons in Al-cluster benzene molecules system
- (2) We observe PL from polaritons, and supress photo-oxidation almost 100-fold for certain configurations
- (3) Multilayers of TMDC can increase Rabi splitting
- (4) EELS can be employed to observe plexcitons with nm resolution
- (5) Multilayer TMDC are quite interesting: (a) self-hybridization,
 (b) anapole-exciton hybridization.
- Is this going to modify photochemistry and exciton transport?

Strong Coupling with Organic Molecules (SCOM):

Bill Barnes, Jaime Gomez Rivas, Francisco Garcia Vidal, Javier Aizpurua

19-21 Octobe

April 26-29, 2020, Gothenburg, Sweden Webpage available: search for SCOM2020

https://www.chalmers.se/en/conference/scom2020/Pages/default.aspx

Acknowledgment:

Financial support:

- Swedish Research Council (VR)
- Engkvist Foundation
- Knut and Alice Wallenberg Foundation
- Area of Advance Nano

VETENSKAPSRÅDET THE SWEDISH RESEARCH COUNCIL

Stiftelsen OLLE ENGH Byggmäss

Knut och Alice allenbergs

- Michael Stührenberg
- Dr. Battulga Munkhbat
- Dr. Denis G. Baranov
- Prof. Tomasz Antosiewicz (Warsaw Univ.)
- Dr. Tuomas Rossi
- Prof. Paul Erhart
- Dr. Andrew Yankovich
- Prof. Eva Olsson
- Prof. Mathieu Kociak (Paris Sud)
- Adriana Canales Ramos
- Dr. Ruggero Verre
- Prof. Mikael Käll