Macroscopic quantum electrodynamics:

Engineering atom-field interactions

Stefan Yoshi Buhmann

Institute of Physics, University of Freiburg, Germany Freiburg Institute for Advanced Studies (FRIAS), Germany

FREIBURG INSTITUTE FOR ADVANCED STUDIES Albert-ludwigs-UNIVERSITÄT FREIBURG

Outline

Introduction: quantum vacuum

Macroscopic quantum electrodynamics: a toolbox

Atom-surface interactions: enhancement by surface plasmons

Cavity QED: effective modes

Resonance energy transfer: impact of environments

Introduction:

Quantum vacuum

Stefan Yoshi Buhmann

The quantum vacuum

"It must be that what can be spoken and thought is, for it is there for being. And there is no such thing as *nothing*." *Parmenides*

"There is no more reason for thing to exist than for *no-thing* to exist."

Democritus

M. Brüderlin, Japan und der Westen: Die erfüllte Leere (Dumont, 2007); R. Waterfield, The First Philosophers (Oxford University Press, 2009)

Stefan Yoshi Buhmann

The quantum vacuum

"It must be that what can be spoken and thought is, for it is there for being. And there is no such thing as *nothing*."

Parmenides

"There is no more reason for thing to exist than for *no-thing* to exist."

Democritus

Quantum vacuum: fluctuating electromagnetic fields

Virtual photons: where do they matter?

M. Brüderlin, *Japan und der Westen: Die erfüllte Leere* (Dumont, 2007); R. Waterfield, *The First Philosophers* (Oxford University Press, 2009)

Stefan Yoshi Buhmann

Vacuum effects in free space

Electron: anomalous magnetic moment

Single atom: Lamb shift, spontaneous decay

Two atoms: Van der Waals force

J. Schwinger, PR **73**, 416 (1948)
W. E. Lamb, R. C. Retherford, PR **72**, 241 (1947)
H. B. G. Casimir, D. Polder, PR **73**, 360 (1948)

FREBURG

Environment-affected vacuum effects

Electron: Position-dependent anomalous magnetic moment

Two atoms: Modified van der Waals force

G. Barton, N. S. J. Fawcett, Phys. Rep. **170**, 1 (1988); H. B. G. Casimir, D. Polder, PR **73**, 360 (1948); E. M. Purcell, PR **69**, 681 (1946); J. Mahanty, B. W. Ninham, J. Phys. A **6** 1140 (1973)

Stefan Yoshi Buhmann

Background:

Macroscopic quantum electrodynamics

Maxwell equations + Green's tensor

Maxwell equations

Constitutive relation

 $\hat{D} = \varepsilon_0 \varepsilon \hat{E} + \hat{P}_{\rm N}$

 $\nabla \cdot \hat{B} = 0 \qquad \nabla \times \hat{E} - i\omega \hat{B} = \mathbf{0}$ $\nabla \cdot \hat{D} = 0 \qquad \nabla \times \hat{H} + i\omega \hat{D} = \mathbf{0}$

Electric field:
$$\hat{\boldsymbol{E}}(\boldsymbol{r}) = \mu_0 \omega^2 \int d^3 r' \boldsymbol{G}(\boldsymbol{r}, \boldsymbol{r}', \omega) \cdot \hat{\boldsymbol{P}}_{N}(\boldsymbol{r}')$$

Green's tensor:

$$\nabla \times \nabla \times \mathbf{G}(r, r', \omega) - \frac{\omega^2}{c^2} \varepsilon(r, \omega) \mathbf{G}(r, r', \omega) = \delta(r - r')$$

L. Knöll, S. Scheel, D.-G. Welsch, in *Coherence and Statistics of Photons and Atoms*, ed. by J. Peřina (Wiley, New York, 2001)

Quantisation + atom-field coupling

Bosonic variables:
$$\left[\widehat{f}(r,\omega),\widehat{f}^{\dagger}(r',\omega')\right] = \delta(r-r')\delta(\omega-\omega')$$

$$\underline{\hat{P}}_{\mathsf{N}}(r,\omega) = \sqrt{\frac{\hbar\varepsilon_0}{\pi}} \operatorname{Im} \varepsilon(r,\omega) \, \widehat{f}(r,\omega)$$

Hamiltonian:
$$\hat{H} = \hat{H}_{\mathsf{F}} + \sum_{\mathsf{A}} \hat{H}_{\mathsf{A}} + \sum_{\mathsf{A}} \hat{H}_{\mathsf{AF}}$$

• Body-Field:
$$\hat{H}_{\mathsf{F}} = \int \mathrm{d}^3 r \int_0^\infty \mathrm{d}\omega \,\hbar\omega \,\hat{f}^{\dagger}(r,\omega) \cdot \hat{f}(r,\omega)$$

• Atom:
$$\hat{H}_{A} = \frac{\hat{p}_{A}^{2}}{2m_{A}} + \sum_{n} E_{n} |n\rangle \langle n|$$

• Electric-dipole coupling: $\hat{H}_{\mathsf{AF}} = -\hat{d} \cdot \hat{E}(r_{\mathsf{A}})$

L. Knöll, S. Scheel, D.-G. Welsch, in *Coherence and Statistics of Photons and Atoms*, ed. by J. Peřina (Wiley, New York, 2001)

Consistency with other theories

Classical electrodynamics: Maxwell eqs. + Lorentz force $\sqrt{}$

$$\begin{aligned} \boldsymbol{\nabla} \cdot \hat{\boldsymbol{B}} &= \boldsymbol{0} & \boldsymbol{\nabla} \times \hat{\boldsymbol{E}} + \dot{\boldsymbol{B}} &= \boldsymbol{0} \\ \boldsymbol{\nabla} \cdot \hat{\boldsymbol{D}} &= \hat{\rho}_A & \boldsymbol{\nabla} \times \hat{\boldsymbol{H}} - \dot{\boldsymbol{D}} &= \hat{\boldsymbol{j}}_A \\ m_\alpha \ddot{\hat{\boldsymbol{r}}}_\alpha &= q_\alpha \hat{\boldsymbol{E}}(\hat{\boldsymbol{r}}_\alpha) + q_\alpha \mathcal{S} \Big[\dot{\hat{\boldsymbol{r}}}_\alpha \times \hat{\boldsymbol{B}}(\hat{\boldsymbol{r}}_\alpha) \Big] \end{aligned}$$

Statistical physics: Fluctuation–dissipation theorem $\sqrt{}$

$$\left\langle \mathcal{S}\left[\Delta \widehat{E}(r,\omega)\Delta \widehat{E}^{\dagger}(r',\omega')\right] \right\rangle = \frac{\hbar}{2\pi}\mu_{0}\omega^{2}\,\mathrm{Im}\,\mathbf{G}(r,r',\omega)\delta(\omega-\omega')$$

Free-space QED: Fundamental commutators $\sqrt{}$

$$\left[\widehat{E}(r),\widehat{B}(r')
ight] = rac{{
m i}\hbar}{arepsilon_0}
abla imes \delta(r-r') \quad {
m for} \ arepsilon(r,\omega) o 1$$

L. Knöll, S. Scheel, D.-G. Welsch, in *Coherence and Statistics of Photons and Atoms*, ed. by J. Peřina (Wiley, New York, 2001)

Atom–surface interactions:

Enhancement by surface plasmons

Laser-induced atom—surface interactions

Setup: atom near surface + evanescent laser

Interactions: $\hat{H}_{int} = -\hat{d} \cdot E_{laser}(r_A) - \hat{d} \cdot \hat{E}(r_A)$

S. Fuchs et al., PRL 121, 083603 (2018)

Laser-induced atom—surface interactions

Setup: atom near surface + evanescent laser

S. Fuchs et al., PRL 121, 083603 (2018)

Force on a moving atom

Starting point:
$$F =
abla \left\langle \widehat{d} \cdot \left[\widehat{E}(r) + v imes \widehat{B}(r) \right]
ight
angle \Big|_{r=r_{\mathsf{A}}}$$

Calculation: integrate coupled atom—field dynamics, Markov approximation, linear order in \boldsymbol{v}

Motion-dependent force:

- Delay effect: Main contribution
- *Röntgen interaction:* Relevant at large distances
- *Doppler effect:* Present for normal motion

S. Scheel, S.Y.B., PRA 80, 042902 (2009)

Stefan Yoshi Buhmann

Ground-state atom

$$F_0 = -\frac{3\omega_{\mathsf{S}}v}{64\pi\varepsilon_0 z_A^5} \sum_k \frac{\Gamma_k \left(2d_{0k}^{\perp 2} + d_{0k}^{\parallel 2}\right)}{(\omega_{k0} + \omega_{\mathsf{S}})^3}$$

Example: Rb atom near Au surface

$$a = -v \left(1.1\,\mathrm{s}^{-1}\right) \left[\frac{1\,\mathrm{nm}}{z_A}\right]^8$$

Caveat: Markov approximation breaks down

S. Scheel, S.Y.B., PRA **80**, 042902 (2009) G. Barton, NJP **12**, 113045 (2010)

Stefan Yoshi Buhmann

Excited Atom

Example (i): Rb atom near Au surface

$$a = -v \left(1.1 imes 10^4 \, \mathrm{s}^{-1}
ight) \left[rac{1 \, \mathrm{nm}}{z_A}
ight]^5$$

S. Scheel, S.Y.B., PRA 80, 042902 (2009)

Stefan Yoshi Buhmann

Excited Atom

Example (ii): Cs atom near Sapphire surface

$$a = +v \left(7.1 imes 10^{11} \, \mathrm{s}^{-1}
ight) \left[rac{1 \, \mathrm{nm}}{z_A}
ight]^5$$

S. Scheel, S.Y.B., PRA 80, 042902 (2009)

Stefan Yoshi Buhmann

Cavity QED:

Effective modes

Jaynes–Cummings model

Identical two-level atoms: $\hat{d}_{A} = d\hat{\sigma}_{A} + d^{*}\hat{\sigma}_{A}^{\dagger}$

 $\hat{H}_{\mathsf{AF}} = \hbar \int_0^\infty \mathrm{d}\omega \, g_\mathsf{A}(\omega) \Big[\hat{a}_\mathsf{A}(\omega) \hat{\sigma}_\mathsf{A}^\dagger + \hat{a}_\mathsf{A}^\dagger(\omega) \hat{\sigma}_\mathsf{A} \Big] \quad \text{(rotating wave app.)}$

Effective field operators: $\left[\hat{a}_{\mathsf{A}}(\omega), \hat{a}_{\mathsf{B}}^{\dagger}(\omega')\right] = \frac{g_{\mathsf{A}\mathsf{B}}^{2}(\omega)}{g_{\mathsf{A}}(\omega)g_{\mathsf{B}}(\omega)}\delta(\omega-\omega')$

$$g_{AB}^2(\omega) = \frac{\mu_0}{\hbar\pi} \omega^2 d \cdot \text{Im} \mathbf{G}(\mathbf{r}_A, \mathbf{r}_B, \omega) \cdot d^*, \qquad g_{AA}^2(\omega) \equiv g_A^2(\omega)$$

Jaynes–Cummings model

Identical two-level atoms: $\hat{d}_{A} = d\hat{\sigma}_{A} + d^{*}\hat{\sigma}_{A}^{\dagger}$

 $\hat{H}_{\mathsf{AF}} = \hbar \int_0^\infty \mathrm{d}\omega \, g_\mathsf{A}(\omega) \Big[\hat{a}_\mathsf{A}(\omega) \hat{\sigma}_\mathsf{A}^\dagger + \hat{a}_\mathsf{A}^\dagger(\omega) \hat{\sigma}_\mathsf{A} \Big] \quad \text{(rotating wave app.)}$

Single-mode approximation: $g_{AB}^2(\omega) = g_{AB}^2(\omega_{\nu}) \frac{\gamma_{\nu}^2/4}{(\omega - \omega_{\nu})^2 + \gamma_{\nu}^2/4}$

S.Y. Buhmann, D.-G. Welsch, PRA 77, 012110 (2008)

Strong coupling: two atoms

Hamiltonian: basis states $|+\rangle |0_{\nu}\rangle$, $|0_A 0_B\rangle |1_{\nu}\rangle$, $|-\rangle |0_{\nu}\rangle$

$$\hat{H} = \frac{\hbar}{2} \begin{pmatrix} 0 & \sqrt{\gamma_{\nu}\pi N} & 0\\ \sqrt{\gamma_{\nu}\pi N} & \Delta & \sqrt{\frac{\gamma_{\nu}\pi}{N}} [g_{\mathsf{A}}^{2}(\omega_{\nu}) - g_{\mathsf{B}}^{2}(\omega_{\nu})] & 0 \end{pmatrix}$$
$$N = g_{\mathsf{A}}^{2}(\omega_{\nu}) + g_{\mathsf{B}}^{2}(\omega_{\nu}) + 2g_{\mathsf{A}\mathsf{B}}^{2}(\omega_{\nu}), \quad \Delta = \omega_{\nu} - \omega_{\mathsf{A}}$$

S. Esfandiarpour et al., J. Phys. B 51, 094004 (2018)

Strong coupling: two atoms

Hamiltonian: basis states $|+\rangle |0_{\nu}\rangle$, $|0_A 0_B\rangle |1_{\nu}\rangle$, $|-\rangle |0_{\nu}\rangle$

$$\hat{H} = \frac{\hbar}{2} \begin{pmatrix} 0 & \sqrt{\gamma_{\nu}\pi N} & 0\\ \sqrt{\gamma_{\nu}\pi N} & \Delta & \sqrt{\frac{\gamma_{\nu}\pi}{N}} [g_{\mathsf{A}}^{2}(\omega_{\nu}) - g_{\mathsf{B}}^{2}(\omega_{\nu})] & \sqrt{\frac{\gamma_{\nu}\pi}{N}} [g_{\mathsf{A}}^{2}(\omega_{\nu}) - g_{\mathsf{B}}^{2}(\omega_{\nu})] & 0 \end{pmatrix}$$
$$N = g_{\mathsf{A}}^{2}(\omega_{\nu}) + g_{\mathsf{B}}^{2}(\omega_{\nu}) + 2g_{\mathsf{A}\mathsf{B}}^{2}(\omega_{\nu}), \quad \Delta = \omega_{\nu} - \omega_{\mathsf{A}}$$

Eigenenergies:
$$E_{\pm} = \frac{\hbar}{2}\Delta \pm \frac{\hbar}{2}\sqrt{\Omega^2(r_A, r_B) + \Delta^2}, E_0 = 0$$

$$\Omega^{2}(r_{\mathsf{A}}, r_{\mathsf{B}}) = 2\gamma_{\nu}\pi \frac{[g_{\mathsf{A}}^{2}(\omega_{\nu}) + g_{\mathsf{A}\mathsf{B}}^{2}(\omega_{\nu})]^{2} + [g_{\mathsf{B}}^{2}(\omega_{\nu}) + g_{\mathsf{A}\mathsf{B}}^{2}(\omega_{\nu})]^{2}}{g_{\mathsf{A}}^{2}(\omega_{\nu}) + g_{\mathsf{B}}^{2}(\omega_{\nu}) + 2g_{\mathsf{A}\mathsf{B}}^{2}(\omega_{\nu})}$$

S. Esfandiarpour et al., J. Phys. B 51, 094004 (2018)

Example: Planar cavity

Two perfect mirrors: $r_p = -r_s = 1 - \delta \Rightarrow \gamma_{\nu} = 2c\delta/d$

S. Esfandiarpour et al., J. Phys. B 51, 094004 (2018)

Example: Planar cavity

S. Esfandiarpour et al., J. Phys. B 51, 094004 (2018)

Photonic Bose–Einstein condensate

Normal Bose–Einstein condensate: atoms in a trap

- Conserved number of particles
- Thermalisation by collisions
- Cooling below critical temperature
- \Rightarrow Macroscopic occupation of ground state

Photonic Bose–Einstein condensate

Photonic Bose–Einstein condensate: photons

- Conserved number of particles?
- Thermalisation by collisions?
- Cooling below critical temperature?

Photonic Bose–Einstein condensate

Photonic Bose–Einstein condensate: photons + dye in cavity

- Conserved number of particles: driving laser
- *Thermalisation by collisions:* absorption/emission by dye molecules
- Cooling below critical temperature: driving beyond threshold

- ⇒ Macroscopic occupation of lowest-energy mode
- J. Klaers, J. Schmitt, F. Vewinger, M. Weitz, Nature 468, 545 (2010)

Symmetry breaking: setup and dynamics

$$\dot{N}_{\nu} = \kappa N_{\nu} - \gamma_{\uparrow \nu} N_{\nu} M (1 - p_{e}) + \gamma_{\downarrow \nu} (N_{\nu} + 1) M p_{e}$$

$$\dot{p}_{e} = - \left[\gamma_{\downarrow} + \sum_{\nu} (l + 1) (N_{\nu} + 1) \gamma_{\downarrow \nu} \right] p_{e}$$

$$+ \left[\gamma_{\uparrow} + \sum_{\nu} (l + 1) N_{\nu} \gamma_{\uparrow \nu} \right] (1 - p_{e})$$

R. Bennett, Y. Gorbachev, S.Y.B, arXiv:1905.07590 (2019)

Driven-dissipative equilibrium

Detecting enantiomeric excess

R. Bennett, Y. Gorbachev, S.Y.B, arXiv:1905.07590 (2019)

Resonance energy transfer:

Impact of environments

The Purcell effect

Fermi's golden rule:
$$\Gamma = \frac{2\pi}{\hbar} \sum_{f} |M_{fi}|^2 \delta(E_i - E_f)$$

Spontaneous decay: $M_{fi} = \langle 1_{\lambda}(r,\omega) | \langle k_{\mathsf{A}} | - \hat{d} \cdot \hat{E}(r_{\mathsf{A}}) | n_A \rangle | \{0\} \rangle$

E.M. Purcell, PR 69, 674 (1946); S.Y.B. et al., PRA 78, 052901 (2008)

Interatomic Coulombic decay

L. S. Cederbaum et al., PRL 79, 4478 (1997)

Interatomic Coulombic decay

Fermi's golden rule:
$$\Gamma = \frac{2\pi}{\hbar} \sum_{f} |M_{fi}|^2 \delta(E_i - E_f)$$

Matrix element:
$$M_{fi} = \sum_{\psi} \frac{\langle f | \hat{H}_{int} | \psi \rangle \langle \psi | \hat{H}_{int} | i \rangle}{E_i - E_{\psi} + i\epsilon}$$

$$\Gamma = 2\pi^2 \sum_{k < n} \Gamma^D_{n \to k} \sigma_A(\hbar \omega_{nk}) \operatorname{tr}[\mathbf{G}(\mathbf{r}_D, \mathbf{r}_A, \omega_{nk}) \cdot \mathbf{G}^*(\mathbf{r}_A, \mathbf{r}_D, \omega_{nk})]$$

L. S. Cederbaum *et al.*, PRL **79**, 4478 (1997); J. L. Hemmerich, R. Bennett and S.Y.B., Nature Commun. **9**, 2934 (2018)

Retardation

J. L. Hemmerich, R. Bennett and S.Y.B., Nature Commun. 9, 2934 (2018)

Bulk medium

ICD rate in medium:
$$\Gamma = \frac{1}{|\varepsilon|^2} \left| \frac{3\varepsilon}{2\varepsilon + 1} \right|^4 \Gamma^{(0)}$$

Effect of medium: screening by polarisable medium J. L. Hemmerich, R. Bennett and S.Y.B., Nature Commun. **9**, 2934 (2018)

Effect of surface: position-dependent enhancement/suppression J. L. Hemmerich, R. Bennett and S.Y.B., Nature Commun. **9**, 2934 (2018)

Mediator atom

Passive mediator: polarisability α_{M}

$$\mathbf{G}(r,r') = \mathbf{G}^{(0)}(r,r') + \mu_0 \omega^2 \alpha_{\mathsf{M}} \mathbf{G}^{(0)}(r,r_{\mathsf{M}}) \cdot \mathbf{G}^{(0)}(r_{\mathsf{M}},r')$$

T. Miteva et al., PRL **119**, 083403 (2017); R. Bennett et al., PRL **122**, 153401 (2019)

Stefan Yoshi Buhmann

Mediator atom

T. Miteva et al., PRL **119**, 083403 (2017); R. Bennett et al., PRL **122**, 153401 (2019)

Stefan Yoshi Buhmann

Acknowledgements

Postdocs: R. Bennett, J. Fiedler, F. Suzuki
PhD: S. Esfandiarpour, Y. Gorbachev, J. Franz, S. Fuchs, (P. Barcellona, J. Klatt)
MSc: S. Bang, F. Lindel, N. Strauß, (F. Burger, J. Durnin, J. Hemmerich)
BSc: (V. Gebhart, T. Haug, M. Könne, R. Oude Weernink, S. Rode)

Alexander von Humboldt Stiftung/Foundation

Stefan Yoshi Buhmann

Conclusions

Macroscopic QED: atoms, photons, bodies

Atom-surface interactions: surface plasmons

- \Rightarrow non-additive laser-induced surface potential
- \Rightarrow enhanced quantum friction

Cavity QED: effective modes

- \Rightarrow position-dependent two-atom Rabi coupling
- \Rightarrow photon BEC as chiral sensor

Resonance energy transfer: impact of environments

 \Rightarrow solvent medium, surface, mediator

