Organic Polaritons 000 0 Understanding Lasing 0000 00 TEMPO 00 Conclusions

# The weak to strong light-matter coupling crossover with organic polaritons

Peter Kirton

TU Wien, Austria

# 

Molecular Polaritonics, July 2019

Organic Polaritons 000 0 Understanding Lasing 0000 00 TEMPO 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusions 00

# Generating coherent light



Organic Polaritons

Understanding Lasing 0000 00 TEMPO 00 Conclusions 00

#### Generating coherent light



#### Superradiance $T\sim 0$



Organic Polaritons 000 0 Understanding Lasin 0000 00 TEMPO 00 Conclusions

# Generating coherent light



Microcavity polaritons  $T\sim 20K$ 



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### Superradiance $T\sim 0$



Organic Polaritons 000 0 Understanding Lasin 0000 00 TEMPO OO Conclusions

# Generating coherent light



#### Superradiance $T\sim 0$



Microcavity polaritons  $T\sim 20K$ 



Organic polaritons, photons  $T\sim 300 K$ 





▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Organic Polaritons

Understanding Lasing

TEMPO 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions 00

#### Outline

#### Generating Coherent Light

#### **Organic Polaritons**

Models Mean-Field

#### Understanding Lasing

Phase Diagrams and Spectrum Optimising lasing

Time-Evolving Matrix Product Operators

Conclusions

Organic Polaritons

Understanding Lasin 0000 00 TEMPO 00

イロト 不得 トイヨト イヨト

3

Conclusions 00

# Physics of Organic Polaritons

#### What?

 Anthracene polariton lasing [Kena-Cohen and Forrest, Nat. Photon '10]



 BEC in polymers [Plumhoff et al. Nat. Mater. '14, Daskalakis et al. Nat. Mater. '14]



Biological materials [Dietrich et al. Sci. Adv. '16]

Organic Polaritons

Understanding Lasin 0000 00 TEMPO

Conclusions

# Physics of Organic Polaritons

#### What?

 Anthracene polariton lasing [Kena-Cohen and Forrest, Nat. Photon '10]



 BEC in polymers [Plumhoff et al. Nat. Mater. '14, Daskalakis et al. Nat. Mater. '14]



Biological materials [Dietrich et al. Sci. Adv. '16]

#### Why?

- Ultastrong coupling: 1eV at T = 300K
- Low threshold lasers?

イロト 不得 トイヨト イヨト

3

Organic Polaritons  $\bigcirc \bigcirc \bigcirc$ 

Understanding Lasin 0000 00 TEMPO 00 Conclusions 00

# Modelling Organic Polaritons

- Top down
  - GPE/kinetic equations (assumes strong coupling)
  - Laser rate equations (assumes weak coupling)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Organic Polaritons  $\bigcirc \bigcirc \bigcirc$ 

Understanding Lasin 0000 00 TEMPO 00 Conclusions 00

# Modelling Organic Polaritons

- Top down
  - GPE/kinetic equations (assumes strong coupling)
  - Laser rate equations (assumes weak coupling)
- Bottom up
  - DFT/quantum chemistry
  - BUT only possible to treat small number of molecules

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Organic Polaritons

Understanding Lasir 0000 00 TEMPO 00 Conclusions

# Modelling Organic Polaritons



Illustration by Dick Codor. [Auerbach, Interacting Electrons (Springer, 1998)]

- Top down
  - GPE/kinetic equations (assumes strong coupling)
  - Laser rate equations (assumes weak coupling)
- Bottom up
  - DFT/quantum chemistry
  - BUT only possible to treat small number of molecules

(日) (四) (日) (日) (日)

 Instead - Physically motivated microscopic models

Organic Polaritons

Understanding Lasing

TEMPO DO Conclusions 00

#### Dicke-Holstein Model

$$H= \qquad \qquad \epsilon \sigma_n^z + \omega_v \left[ b_n^\dagger b_n + \sqrt{S} \sigma_n^z (b+b^\dagger) \right]$$

• Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state



590

3

Organic Polaritons

Understanding Lasin 0000 00 TEMPO OO

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusions 00

#### Dicke-Holstein Model

$$H = \omega_c a^{\dagger} a + \sum_n \epsilon \sigma_n^z + \omega_v \left[ b_n^{\dagger} b_n + \sqrt{S} \sigma_n^z (b + b^{\dagger}) \right] + g \sigma_n^x (a + a^{\dagger})$$

- Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state
- Include many molecules and couple to a cavity



Organic Polaritons

Understanding Lasin 0000 00 TEMPO OO Conclusions

#### Dicke-Holstein Model

$$H = \omega_c a^{\dagger} a + \sum_n \epsilon \sigma_n^z + \omega_v \left[ b_n^{\dagger} b_n + \sqrt{S} \sigma_n^z (b + b^{\dagger}) \right] + g \sigma_n^x (a + a^{\dagger})$$

- Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state
- Include many molecules and couple to a cavity



 Equilibrium: [Cwik et al. EPL 14, PRA 16; Spano JCP 15; Galego et al. PRX 15; Wu et al. PRB 16; Herrera & Spano PRL, PRA 17; Zeb et al. ACS Phot. 18 ...]

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Organic Polaritons

Understanding Lasin 0000 00 TEMPO OO Conclusions 00

#### Dicke-Holstein Model

$$H = \omega_c a^{\dagger} a + \sum_n \epsilon \sigma_n^z + \omega_v \left[ b_n^{\dagger} b_n + \sqrt{S} \sigma_n^z (b + b^{\dagger}) \right] + g \sigma_n^x (a + a^{\dagger})$$

- Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state
- Include many molecules and couple to a cavity



 Equilibrium: [Cwik et al. EPL 14, PRA 16; Spano JCP 15; Galego et al. PRX 15; Wu et al. PRB 16; Herrera & Spano PRL, PRA 17; Zeb et al. ACS Phot. 18 ...]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

 Weak coupling non-equilibrium: [PK & Keeling, PRL 13, PRA 15, Hesten et al. PRL 18]

Organic Polaritons

Understanding Lasin 0000 00 TEMPO OO Conclusions 00

#### Dicke-Holstein Model

$$H = \omega_c a^{\dagger} a + \sum_n \epsilon \sigma_n^z + \omega_v \left[ b_n^{\dagger} b_n + \sqrt{S} \sigma_n^z (b + b^{\dagger}) \right] + g \sigma_n^x (a + a^{\dagger})$$

- Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state
- Include many molecules and couple to a cavity



- Equilibrium: [Cwik et al. EPL 14, PRA 16; Spano JCP 15; Galego et al. PRX 15; Wu et al. PRB 16; Herrera & Spano PRL, PRA 17; Zeb et al. ACS Phot. 18 ...]
- Weak coupling non-equilibrium: [PK & Keeling, PRL 13, PRA 15, Hesten et al. PRL 18]
- Strong coupling non-equilibrium?

Organic Polaritons

Understanding Lasin 0000 00 TEMPO OO Conclusions 00

#### Dicke-Holstein Model

$$H = \omega_c a^{\dagger} a + \sum_n \epsilon \sigma_n^z + \omega_v \left[ b_n^{\dagger} b_n + \sqrt{S} \sigma_n^z (b + b^{\dagger}) \right] + g \sigma_n^x (a + a^{\dagger})$$

- Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state
- Include many molecules and couple to a cavity



• Include loss processes:

$$\dot{\rho} = -i[H,\rho] + \kappa \mathcal{L}[a]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Organic Polaritons

Understanding Lasin 0000 00 TEMPO OO Conclusions 00

#### Dicke-Holstein Model

$$H = \omega_c a^{\dagger} a + \sum_n \epsilon \sigma_n^z + \omega_v \left[ b_n^{\dagger} b_n + \sqrt{S} \sigma_n^z (b + b^{\dagger}) \right] + g \sigma_n^x (a + a^{\dagger})$$

- Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state
- Include many molecules and couple to a cavity



• Include loss processes:

 $\dot{\rho} = -i[H,\rho] + \kappa \mathcal{L}[a] + \Gamma_{\downarrow} \mathcal{L}[\sigma_n^-] + \Gamma_{\uparrow} \mathcal{L}[\sigma_n^+]$ 

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Organic Polaritons

Understanding Lasin 0000 00 TEMPO OO Conclusions 00

#### Dicke-Holstein Model

$$H = \omega_c a^{\dagger} a + \sum_n \epsilon \sigma_n^z + \omega_v \left[ b_n^{\dagger} b_n + \sqrt{S} \sigma_n^z (b + b^{\dagger}) \right] + g \sigma_n^x (a + a^{\dagger})$$

- Organic molecule  $\Rightarrow$  electronic transition dressed by vibrational state
- Include many molecules and couple to a cavity



• Include loss processes:

$$\begin{split} \dot{\rho} &= -i[H,\rho] + \kappa \mathcal{L}[a] + \Gamma_{\downarrow} \mathcal{L}[\sigma_{n}^{-}] + \Gamma_{\uparrow} \mathcal{L}[\sigma_{n}^{+}] \\ &+ \gamma_{\downarrow} \mathcal{L}[b_{n} - \sqrt{S}\sigma_{n}^{-}] + \gamma_{\uparrow} \mathcal{L}[b_{n}^{\dagger} - \sqrt{S}\sigma_{n}^{-}] \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

Organic Polaritons

Understanding Lasing

TEMPO OO

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions 00

### Mean-Field Treatment

• To analyse dynamics make a mean-field decoupling between molecules and cavity

Organic Polaritons

Understanding Lasing 0000 00 TEMPO 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions 00

### Mean-Field Treatment

- To analyse dynamics make a mean-field decoupling between molecules and cavity
- Describe combined electronic and vibrational state by Gell-Mann matrices  $\lambda_i$

Organic Polaritons

Understanding Lasing

TEMPO OO Conclusions 00

### Mean-Field Treatment

- To analyse dynamics make a mean-field decoupling between molecules and cavity
- Describe combined electronic and vibrational state by Gell-Mann matrices  $\lambda_i$
- Set of equations for  $\alpha = \langle a \rangle$  and  $l_i = \langle \lambda_i \rangle$

$$\partial_t \alpha = -\left(i\omega_c + \frac{\kappa}{2}\right)\alpha - 4i\frac{g^2\mathcal{N}_m}{\varepsilon}\operatorname{Re}[\alpha] - i\mathcal{N}_m B_i\ell_i$$
$$\partial_t \ell_i = \left(\xi_{ik} + 4f_{ijk}B_j\operatorname{Re}[\alpha]\right)\ell_k + \frac{4i}{N}c_j^{\mu}c_k^{\mu*}f_{ijk}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Organic Polaritons

Understanding Lasing

TEMPO 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusions 00

### Phase Diagram

• Look at stability of  $\alpha = 0$  solution: Lasing phase diagram

Organic Polaritons

Understanding Lasing

TEMPO 00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Conclusions 00

### Phase Diagram

- Look at stability of  $\alpha = 0$  solution: Lasing phase diagram
- Weak coupling



Organic Polaritons

Understanding Lasing

TEMPO 00

イロト 不得 トイヨト イヨト

Conclusions 00

₹ 9Q@

### Phase Diagram

• Look at stability of  $\alpha = 0$  solution: Lasing phase diagram

Weak coupling



Organic Polaritons

Understanding Lasing

TEMPO 00 Conclusions 00

# Phase Diagram

- Look at stability of  $\alpha = 0$  solution: Lasing phase diagram
- Weak coupling



• Understand from absorption/emission



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Organic Polaritons

Understanding Lasing

TEMPO 00

・ロト ・四ト ・ヨト ・ヨト

Ξ.

Conclusions 00

# Phase Diagram - Stronger Coupling



Generating Coherent Light Organic Polaritons

Understanding Lasing

TEMPO 00

(日)

э

Conclusions 00

#### Phase Diagram - Stronger Coupling



rganic Polaritons

Understanding Lasing

TEMPO 00 Conclusions





▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

rganic Polaritons

Understanding Lasing

TEMPO 00

< ロ > < 同 > < 回 > < 回 >

Conclusions





• What is the physics behind the re-entrant phase diagram?

900

э.

Organic Polaritons

Understanding Lasing

TEMPO 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusions 00

#### Spectrum - weak coupling





Organic Polaritons

Understanding Lasing

TEMPO 00 Conclusions 00

#### Spectrum - weak coupling





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Organic Polaritons

Understanding Lasing

TEMPO 00 Conclusions 00

#### Spectrum - weak coupling





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Organic Polaritons

Understanding Lasing

TEMPO OO Conclusions 00

#### Spectrum - weak coupling





200

rganic Polaritons

Understanding Lasing

TEMPO

Conclusions 00



900

Organic Polaritons 000 0 Understanding Lasing

TEMPO 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Conclusions 00

# Spectrum - strong coupling





Organic Polaritons

Understanding Lasing

TEMPO 00 Conclusions 00

# Spectrum - strong coupling





200

rganic Polaritons

Understanding Lasing

TEMPO

Conclusions





Organic Polaritons

Understanding Lasing

TEMPO 00

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conclusions 00

# **Optimising** lasing

• Can strong coupling help with low threshold lasing?

Organic Polaritons

Understanding Lasing

TEMPO 00

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conclusions 00

# Optimising lasing

• Can strong coupling help with low threshold lasing?

• Optimise over frequency and find lowest threshold

Organic Polaritons

Understanding Lasing

TEMPO 00 Conclusions 00

# Optimising lasing

Can strong coupling help with low threshold lasing?

- Optimise over frequency and find lowest threshold
- No significant g dependance



・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э.

Organic Polaritons

Understanding Lasing

TEMPO 00 Conclusions 00

# Optimising lasing

• Can strong coupling help with low threshold lasing?

- Optimise over frequency and find lowest threshold
- No significant g dependance
- BUT low threshold over wider frequency range



イロト 不得 トイヨト イヨト

Organic Polaritons

Understanding Lasing TE

EMPO O Conclusions 00

# And now for something completely different....

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○ ○

| Generating Coherent Light | Organic Polaritons | Understanding Lasing | TEMPO | Conclusions |
|---------------------------|--------------------|----------------------|-------|-------------|
| 00                        | 000                | 0000                 | •0    | 00          |

- Time-Evolving Matrix Product Operators
- New method for solving dynamics of few-level quantum systems strongly coupled to environment

| Generating Coherent Light | Organic Polaritons | Understanding Lasing | TEMPO | Conclusions |
|---------------------------|--------------------|----------------------|-------|-------------|
| 00                        | 000                | 0000                 | •0    | 00          |
|                           |                    |                      |       |             |

- Time-Evolving Matrix Product Operators
- New method for solving dynamics of few-level quantum systems strongly coupled to environment

$$H = H_S + S \sum_i (g_i a_i + g_i^* a_i^{\dagger}) + \sum_i \omega_i a_i^{\dagger} a_i$$

• Specify: Spectral function  $J(\omega) = \sum_i |g_i|^2 \delta(\omega - \omega_i)$ ,  $H_S$  and S

| Generating Coherent Light | Organic Polaritons | Understanding Lasing | TEMPO | Conclusions |
|---------------------------|--------------------|----------------------|-------|-------------|
| 00                        | 000                | 0000                 | •0    | 00          |

- Time-Evolving Matrix Product Operators
- New method for solving dynamics of few-level quantum systems strongly coupled to environment

$$H = H_S + S \sum_i (g_i a_i + g_i^* a_i^{\dagger}) + \sum_i \omega_i a_i^{\dagger} a_i$$

- Specify: Spectral function  $J(\omega) = \sum_i |g_i|^2 \delta(\omega \omega_i)$ ,  $H_S$  and S
- Evolve tensor network to find system dynamics



### Examples

 Localisation phase transition in the spin boson model 0.003 delocalised localised  $S_{z}$ 0.0 0.001 -0.2 Nonlinearities in optomechanics -0.15 $\alpha = 0.01$   $\alpha = 0.05$  $\alpha = 0.15$ 0,8 (d) 2.0 $\langle c_{\downarrow} c \rangle^{i}$ 1.0â0,4 0.0 0.84(e) 2.0 (° 1.0 0.0 2.0 (C 0.8 (f)  $\langle \hat{c}_{\downarrow} \rangle$ 

0 1 2 3 4

[Minoguchi et al. arXiv1904.02164]

-i ċ  $\operatorname{Re}(\zeta)$ 

Š0.4

 $\frac{20}{\omega_c t}$ 40



Possible applications for polaritons?

Organic Polaritons

Understanding Lasir 0000 00 TEMPO OO Conclusions

#### Acknowledgements









Dominic Aidan Dainius Jonathan Brendan Gribben Strathearn Kilda Keeling Lovett





Yuri Peter Minoguchi Rabl



イロト 不得 トイヨト イヨト

3

Organic Polaritons 000 0 Understanding Lasing 0000 00 TEMPO 00 Conclusions

# Conclusions

- The Dicke-Holstein model provides a relatively simple model of organic polaritons
- Complex physics emerges: competition between electronic and vibrational transitions, Hamiltonian and dissipative terms
- TEMPO provides efficient and accurate simulations of non-Markovian systems



Strashko, Kirton, Keeling PRL, **121**, 193601 (2018) Strathearn, Kirton, Kilda, Keeling, Lovett Nat. Commun. **9** 3322 (2018)