Ab-initio QED

Long-wavelength limit

Applications

mpsd

Ab-initio Quantum Electrodynamics: Beyond the Model Paradigm

Michael Ruggenthaler¹, C. Schäfer¹, R. Jestädt¹, V. Rokaj¹, D. Welakuh¹, M. Penz¹, J. Flick², M. Sentef¹, H. Appel¹, and A. Rubio^{1,3,4}

Max-Planck Institut für Struktur und Dynamik der Materie, Hamburg, Germany
 Department of Chemistry, Harvard University, Cambridge, USA
 Nano-Bio Spectroscopy Group and ETSF, UPV, San Sebastian, Spain
 Center for Computational Quantum Physics, Flatiron Institute, New York, USA

MOLECULAR POLARITONICS 2019

Theoretical and Numerical Approaches Miraflores de la Sierra, Madrid, July 8, 2019

Ab-initio QED

Long-wavelength limit

Applications

Outlook

Introduction and motivation

Light and matter (quantum electrodynamics)

project.slac.stanford.edu/e158/experiment.html

Ab-initio QED

Long-wavelength limit

Applications

 $\hat{H}_{\text{int}} = \frac{1}{c} \int \mathrm{d}^3 r \hat{J}_{\mu}(\mathbf{r}) \hat{A}^{\mu}(\mathbf{r})$

Introduction and motivation

Light and matter (quantum electrodynamics)

project.slac.stanford.edu/e158/experiment.html

project.slac.stanford.edu/e158/experiment.html

• $\hat{H}_{int} = \frac{1}{c} \int d^3 r \hat{J}_{\mu}(\mathbf{r}) \hat{A}^{\mu}(\mathbf{r})$ • $\hat{J}_{\mu}(\mathbf{r})$ charge current

project.slac.stanford.edu/e158/experiment.html

• $\hat{H}_{int} = \frac{1}{c} \int d^3 r \hat{J}_{\mu}(\mathbf{r}) \hat{A}^{\mu}(\mathbf{r})$ • $\hat{J}_{\mu}(\mathbf{r})$ charge current • $\hat{A}^{\mu}(\mathbf{r}) = \int d^3 k \, \mu [\hat{a}, a^{i\mathbf{k}\cdot\mathbf{r}} + \hat{a}^{\dagger} a^{-i\mathbf{k}\cdot\mathbf{r}}]$

$$\oint \frac{\mathrm{d}^{3}k}{\sqrt{2|k|}} \lambda^{\mu} \left[\hat{a}_{\mathbf{k}} e^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} + \hat{a}_{\mathbf{k}}^{\dagger} e^{-\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \right]$$

project.slac.stanford.edu/e158/experiment.html

$$\oint \frac{\mathrm{d}^{3} k}{\sqrt{2|k|}} \lambda^{\mu} \left[\hat{a}_{\mathbf{k}} e^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}} + \hat{a}_{\mathbf{k}}^{\dagger} e^{-\mathrm{i}\mathbf{k}\cdot\mathbf{r}} \right]$$

project.slac.stanford.edu/e158/experiment.html

$$\int d^{3} k \sqrt{2|k|} \lambda^{\mu} \left[\hat{a}_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{r}} + \hat{a}_{\mathbf{k}}^{\dagger} e^{-i\mathbf{k}\cdot\mathbf{r}} \right]$$

Matter (q-mechanics)

project.slac.stanford.edu/e158/experiment.html

Matter (q-mechanics)

1.Ruggenthaler

M.Ruggenthaler

Ab-initio QED

M.Ruggenthaler

Ab-initio QED

GaAs quantum ring in a cavity (weak coupling).

GaAs quantum ring in a cavity (weak coupling).

 $n_{\lambda} - n_0$ (exact)

¹C. Schäfer et al., PRA 98, 043801 (2018), ²M. Sentef et al., Science Adv. 4 (11), eaau6969 (2018) M.Ruggenthaler Ab-initio QED

Superconductor in cavity (strong coupling)

¹C. Schäfer et al., PRA 98, 043801 (2018), ²M. Sentef et al., Science Adv. 4 (11), eaau6969 (2018) M.Ruggenthaler Ab-initio QED

1 / 10

molecule-proton interaction L R R E_s Shin-Metin model R_s

Molecule (strong coupling).

³J. Flick et al., JCTC 13 (4), 1616 (2017), ⁴V. Rokaj et al., J. Phys. B 51, 034005 (2018), ⁵C. Schäfer et al., in preparation (2019)

Molecule (strong coupling).

³J. Flick et al., JCTC 13 (4), 1616 (2017), ⁴V. Rokaj et al., J. Phys. B 51, 034005 (2018), ⁵C. Schäfer et al., in preparation (2019)

[•]J. Flick et al., JCTC 13 (4), 1616 (2017), [•]V. Rokaj et al., J. Phys. B 51, 034005 (2018),[•] et al., in preparation (2019)

³ J. Flick et al., JCTC 13 (4), 1616 (2017), ⁴V. Rokaj et al., J. Phys. B 51, 034005 (2018), ⁵C. Schäfer et al., in preparation (2019)

Ab-initio QED

Long-wavelength limit

Applications

Non-relativistic quantum-electrodynamics⁶

⁶D.P.Craig and T.Thirunamachandran, *Molecular QED*, Courier Corporation (1984) ⁷H.Spohn, *Dynamics of Charged Particles and their Radiation Field*, Cambridge University Press (2004) M.Ruggenthaler Ab-initio QED 3 / 10

Ab-initio QED

Long-wavelength limit

Applications

Non-relativistic quantum-electrodynamics⁶

$$\begin{aligned} \hat{\mathcal{H}}_{\mathrm{PF}}(t) &= \sum_{l=1}^{N_{e}} \frac{1}{2m} \left[\left(-i\hbar \nabla_{\boldsymbol{r}_{l}} + \frac{|\boldsymbol{e}|}{c} \hat{\boldsymbol{A}}_{\perp}^{\mathrm{tot}}(\boldsymbol{r}_{l}, t) \right) \right]^{2} + \frac{|\boldsymbol{e}|\hbar}{2m} \sigma_{l} \cdot \hat{\boldsymbol{B}}_{\perp}^{\mathrm{tot}}(\boldsymbol{r}_{l}, t) \\ &+ \sum_{l=1}^{N_{n}} \frac{1}{2M_{l}} \left[\left(-i\hbar \nabla_{\boldsymbol{R}_{l}} - \frac{Z_{l}|\boldsymbol{e}|}{c} \hat{\boldsymbol{A}}_{\perp}^{\mathrm{tot}}(\boldsymbol{R}_{l}, t) \right) \right]^{2} - \frac{Z_{l}|\boldsymbol{e}|\hbar}{2M_{l}} \boldsymbol{S}_{l} \cdot \hat{\boldsymbol{B}}_{\perp}^{\mathrm{tot}}(\boldsymbol{r}_{l}, t) \\ &+ \frac{1}{2} \sum_{l \neq m}^{N_{e}} w(|\boldsymbol{r}_{l} - \boldsymbol{r}_{k}|) + \frac{1}{2} \sum_{l \neq m}^{N_{n}} Z_{l} Z_{m} w(|\boldsymbol{R}_{l} - \boldsymbol{R}_{k}|) \\ &- \sum_{l}^{N_{e}} \sum_{m}^{N_{n}} Z_{m} w(|\boldsymbol{r}_{l} - \boldsymbol{R}_{m}|) + \sum_{\boldsymbol{k},\lambda} \hbar \omega_{k} \hat{\boldsymbol{a}}_{\boldsymbol{k},\lambda}^{\dagger} \hat{\boldsymbol{a}}_{\boldsymbol{k},\lambda}, \end{aligned}$$

⁶D.P.Craig and T.Thirunamachandran, *Molecular QED*, Courier Corporation (1984) ⁷H.Spohn, *Dynamics of Charged Particles and their Radiation Field*, Cambridge University Press (2004) M.Ruggenthaler Ab-initio QED 3

Ab-initio QED

Long-wavelength limit

Applications

Non-relativistic quantum-electrodynamics⁶

$$\begin{aligned} \hat{H}_{\rm PF}(t) &= \sum_{l=1}^{N_e} \frac{1}{2m} \left[\left(-i\hbar \nabla_{\mathbf{r}_l} + \frac{|\mathbf{e}|}{c} \hat{\mathbf{A}}_{\perp}^{\rm tot}(\mathbf{r}_l, t) \right) \right]^2 + \frac{|\mathbf{e}|\hbar}{2m} \sigma_l \cdot \hat{\mathbf{B}}_{\perp}^{\rm tot}(\mathbf{r}_l, t) \\ &+ \sum_{l=1}^{N_n} \frac{1}{2M_l} \left[\left(-i\hbar \nabla_{\mathbf{R}_l} - \frac{Z_l |\mathbf{e}|}{c} \hat{\mathbf{A}}_{\perp}^{\rm tot}(\mathbf{R}_l, t) \right) \right]^2 - \frac{Z_l |\mathbf{e}|\hbar}{2M_l} \mathbf{S}_l \cdot \hat{\mathbf{B}}_{\perp}^{\rm tot}(\mathbf{r}_l, t) \\ &+ \frac{1}{2} \sum_{l \neq m}^{N_e} w(|\mathbf{r}_l - \mathbf{r}_k|) + \frac{1}{2} \sum_{l \neq m}^{N_n} Z_l Z_m w(|\mathbf{R}_l - \mathbf{R}_k|) \\ &- \sum_l^{N_e} \sum_m^{N_n} Z_m w(|\mathbf{r}_l - \mathbf{R}_m|) + \sum_{\mathbf{k},\lambda} \hbar \omega_k \hat{\mathbf{a}}_{\mathbf{k},\lambda}^{\dagger} \hat{\mathbf{a}}_{\mathbf{k},\lambda}, \\ \hat{\mathbf{A}}_{\perp}^{\rm tot}(\mathbf{r}, t) &= \hat{\mathbf{A}}_{\perp}(\mathbf{r}) + \mathbf{A}^{\rm ext}(\mathbf{r}, t), \quad \hat{\mathbf{B}}_{\perp}^{\rm tot}(\mathbf{r}, t) = \frac{1}{c} \nabla \times \hat{\mathbf{A}}_{\perp}^{\rm tot}(\mathbf{r}, t) \\ &\qquad w(|\mathbf{r} - \mathbf{r}'|) \stackrel{L \to \infty}{=} e^2 / 4\pi \epsilon_0 |\mathbf{r} - \mathbf{r}'| \end{aligned}$$

⁶D.P.Craig and T.Thirunamachandran, *Molecular QED*, Courier Corporation (1984) ⁷H.Spohn, *Dynamics of Charged Particles and their Radiation Field*, Cambridge University Press (2004) M.Ruggenthaler Ab-initio QED 3 / 10

$$\hat{H}_{\rm PF}(t) = \hat{T} + \hat{W}(t) + \sum \hbar \omega_k \hat{a}^{\dagger}_{\boldsymbol{k},\lambda} \hat{a}_{\boldsymbol{k},\lambda} - \frac{1}{c} \int \mathrm{d}^3 r \; \hat{J}(\boldsymbol{r},t) \cdot \hat{\boldsymbol{A}}_{\perp}^{\rm tot}(\boldsymbol{r},t)$$

Introduction Ab-initio QED Long-wavelength limit Applications Outlook
Many-body methods for Pauli-Fierz field theory^{8,9,10}

$$\hat{H}_{PF}(t) = \hat{T} + \hat{W}(t) + \sum \hbar \omega_k \hat{a}^{\dagger}_{k,\lambda} \hat{a}_{k,\lambda} - \frac{1}{c} \int d^3r \, \hat{J}(\mathbf{r}, t) \cdot \hat{A}^{tot}_{\perp}(\mathbf{r}, t)$$

$$\hat{J}(\mathbf{r}, t) = \hat{J}_{p}(\mathbf{r}) + \hat{J}_{m}(\mathbf{r}) + \hat{A}^{tot}_{\perp}(\mathbf{r}, t) \left(\sum_{l=1}^{N_e} \frac{e^2}{mc} \, \delta(\mathbf{r} - \mathbf{r}_l) + \sum_{l=1}^{N_n} \frac{Z_l^2 e^2}{M_l c} \delta(\mathbf{r} - \mathbf{R}_l) \right),$$

$$= -\frac{|\mathbf{e}|}{mc^2} \hat{n}_{e}(\mathbf{r}) = \sum_{l=1}^{N_e} \frac{|\mathbf{e}|\hbar}{2mi} \left(\delta(\mathbf{r} - \mathbf{r}_l) \nabla_{\mathbf{r}_l} - \overleftarrow{\nabla}_{\mathbf{r}_l} \delta(\mathbf{r} - \mathbf{r}_l) \right) + \sum_{l=1}^{N_n} \frac{Z_l |\mathbf{e}|\hbar}{2M_l i} \left(\delta(\mathbf{r} - \mathbf{R}_l) \nabla_{\mathbf{R}_l} - \overleftarrow{\nabla}_{\mathbf{R}} \delta(\mathbf{r} - \mathbf{R}_l) \right)$$

$$\hat{J}_{m}(\mathbf{r}) = \sum_{l=1}^{N_e} \frac{|\mathbf{e}|\hbar}{2m} \nabla_{\mathbf{r}_l} \times (\sigma_l \delta(\mathbf{r} - \mathbf{r}_l)) - \sum_{l=1}^{N_n} \frac{Z_l |\mathbf{e}|\hbar}{2M_l} \nabla_{\mathbf{R}_l} \times (\mathbf{S}_l \delta(\mathbf{r} - \mathbf{R}_l))$$

⁸ M. Ruggenthaler et al., PRA 90, 012508 (2014), ⁹ M. Ruggenthaler et al., Nat. Rev. Chem. 2, 0118 (2018), ¹⁰ R. Jestädt et al., arXiv:1812.05049 (2018)

Introduction Ab-initio QED Long-wavelength limit Applications Outlook
Many-body methods for Pauli-Fierz field theory^{8,9,10}

$$\hat{H}_{PF}(t) = \hat{T} + \hat{W}(t) + \sum \hbar \omega_k \hat{a}^{\dagger}_{k,\lambda} \hat{a}_{k,\lambda} - \frac{1}{c} \int d^3 r \, \hat{J}(\mathbf{r}, t) \cdot \hat{A}^{tot}_{\perp}(\mathbf{r}, t)$$

$$\hat{J}(\mathbf{r}, t) = \hat{J}_{p}(\mathbf{r}) + \hat{J}_{m}(\mathbf{r}) + \hat{A}^{tot}_{\perp}(\mathbf{r}, t) \left(\sum_{l=1}^{N_e} \frac{e^2}{mc} \, \delta(\mathbf{r} - \mathbf{r}_l) + \sum_{l=1}^{N_n} \frac{Z_l^2 e^2}{M_l c} \delta(\mathbf{r} - \mathbf{R}_l) \right),$$

$$= -\frac{|\mathbf{e}|}{mc^2} \hat{h}_{e}(\mathbf{r}) = \sum_{l=1}^{N_e} \frac{|\mathbf{e}|\hbar}{2mi} \left(\delta(\mathbf{r} - \mathbf{r}_l) \nabla_{\mathbf{r}_l} - \overleftarrow{\nabla}_{\mathbf{r}_l} \delta(\mathbf{r} - \mathbf{r}_l) \right) + \sum_{l=1}^{N_n} \frac{Z_l |\mathbf{e}|\hbar}{2M_l i} \left(\delta(\mathbf{r} - \mathbf{R}_l) \nabla_{\mathbf{R}_l} - \overleftarrow{\nabla}_{\mathbf{R}} \delta(\mathbf{r} - \mathbf{R}_l) \right)$$

$$\hat{J}_{m}(\mathbf{r}) = \sum_{l=1}^{N_e} \frac{|\mathbf{e}|\hbar}{2m} \nabla_{\mathbf{r}_l} \times (\sigma_l \delta(\mathbf{r} - \mathbf{r}_l)) - \sum_{l=1}^{N_n} \frac{Z_l |\mathbf{e}|\hbar}{2M_l} \nabla_{\mathbf{R}_l} \times (\mathbf{S}_l \delta(\mathbf{r} - \mathbf{R}_l))$$

• Density-functional theory for QED for $(\langle \hat{J} \rangle, \langle \hat{A}_{\perp} \rangle)$

⁸M. Ruggenthaler *et al.*, PRA 90, 012508 (2014), ⁹M. Ruggenthaler *et al.*, Nat. Rev. Chem. 2, 0118 (2018), ¹⁰R. Jestädt *et al.*, arXiv:1812.05049 (2018)

Introduction Ab-initio QED Long-wavelength limit Applications Outlook
Many-body methods for Pauli-Fierz field theory^{8,9,10}

$$\hat{H}_{PF}(t) = \hat{T} + \hat{W}(t) + \sum \hbar \omega_k \hat{a}^{\dagger}_{k,\lambda} \hat{a}_{k,\lambda} - \frac{1}{c} \int d^3 r \, \hat{J}(\mathbf{r}, t) \cdot \hat{A}^{tot}_{\perp}(\mathbf{r}, t)$$

$$\hat{J}(\mathbf{r}, t) = \hat{J}_{p}(\mathbf{r}) + \hat{J}_{m}(\mathbf{r}) + \hat{A}^{tot}_{\perp}(\mathbf{r}, t) \left(\sum_{l=1}^{N_e} \frac{e^2}{mc} \, \delta(\mathbf{r} - \mathbf{r}_l) + \sum_{l=1}^{N_n} \frac{Z_l^2 e^2}{M_l c} \delta(\mathbf{r} - \mathbf{R}_l) \right),$$

$$= -\frac{|\mathbf{e}|}{mc^2} \hat{h}_{e}(\mathbf{r}) = \sum_{l=1}^{N_e} \frac{|\mathbf{e}|\hbar}{2mi} \left(\delta(\mathbf{r} - \mathbf{r}_l) \nabla_{\mathbf{r}_l} - \overleftarrow{\nabla}_{\mathbf{r}_l} \delta(\mathbf{r} - \mathbf{r}_l) \right) + \sum_{l=1}^{N_n} \frac{Z_l |\mathbf{e}|\hbar}{2M_l i} \left(\delta(\mathbf{r} - \mathbf{R}_l) \nabla_{\mathbf{R}_l} - \overleftarrow{\nabla}_{\mathbf{R}} \delta(\mathbf{r} - \mathbf{R}_l) \right)$$

$$\hat{J}_{m}(\mathbf{r}) = \sum_{l=1}^{N_e} \frac{|\mathbf{e}|\hbar}{2m} \nabla_{\mathbf{r}_l} \times (\sigma_l \delta(\mathbf{r} - \mathbf{r}_l)) - \sum_{l=1}^{N_n} \frac{Z_l |\mathbf{e}|\hbar}{2M_l} \nabla_{\mathbf{R}_l} \times (\mathbf{S}_l \delta(\mathbf{r} - \mathbf{R}_l))$$

Density-functional theory for QED for $(\langle \hat{J} \rangle, \langle \hat{A}_{\perp} \rangle)$

Reduced density-matrix or Green's function theory

⁸M. Ruggenthaler *et al.*, PRA 90, 012508 (2014), ⁹M. Ruggenthaler *et al.*, Nat. Rev. Chem. 2, 0118 (2018), ¹⁰R. Jestädt *et al.*, arXiv:1812.05049 (2018)

Introduction	Ab-initio QED	Long-wavelength limit	Applications	Outlook
Quantum	-electrodynamica	l density-functional s	imulation*	mpsd

*see also poster 14. Real-time solutions of coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations: fundamentals, implementation, and nano-optical applications by R. Jestädt

Ab-initio QED

Long-wavelength limit

Applications

Outlook

Quantum-electrodynamical density-functional simulation

Sodium atom
 atomic bond
 Sodium sphere range

Nanoplasmonic dimer of two times 297 Sodium atoms and 297 valence electrons

*see also poster 14. Real-time solutions of coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations: fundamentals, implementation, and nano-optical applications by R. Jestädt

Ab-initio QED

Long-wavelength limit

Applications

Outlook

Quantum-electrodynamical density-functional simulation

Sodium atom
 atomic bond
 Sodium sphere range

Nanoplasmonic dimer of two times 297 Sodium atoms

*see also poster 14. Real-time solutions of coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations: fundamentals, implementation, and nano-optical applications by R. Jestädt

Ab-initio QED

Long-wavelength limit

Applications

Outlook

Quantum-electrodynamical density-functional simulation*

O Sodium atom atomic bond Sodium sohere range

Transverse electric field in z-direction and dipole approximation at the far-field point

see also poster 14. Real-time solutions of coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations: fundamentals, implementation, and nano-optical applications by R. Jestädt

Ab-initio QED

Long-wavelength limit

Applications

Outlook

Quantum-electrodynamical density-functional simulation*

Nanoplasmonic dimer of two times 297 Sodium atoms and 297 valence electrons

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{F2F} (unrelaxed) \\ \textbf{F2F} (unrelaxed) \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \textbf{E2E} (relaxed) \\ \textbf{F2F} (unrelaxed) \\ \textbf{F2F} (unrelaxed) \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \begin{array}{c} \textbf{F2F} (unrelaxed) \\ \textbf{F2F} (unrelaxed) \\ \textbf{F2F} (unrelaxed) \\ \textbf{F2F} (unrelaxed) \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \textbf{F2F} (unrelaxed) \\ \textbf{F$

Transverse electric field in z-direction and dipole approximation at the far-field point

Spectrum deduced from Maxwell

*see also poster 14. Real-time solutions of coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations: fundamentals, implementation, and nano-optical applications by R. Jestädt

Ab-initio QED

Long-wavelength limit

Applications

Outlook

Long-wavelength limit^{1,4}

¹C. Schäfer et al., PRA 98, 043801 (2018),⁴V. Rokaj et al., J. Phys. B 51, 034005 (2018)

 $\hat{A}_{\perp}(\mathbf{r}) pprox \hat{A}_{\perp}(\mathbf{0}) \Rightarrow \int \mathrm{d}^{3}r \; \hat{J}(\mathbf{r},t) \cdot \hat{A}_{\perp}(\mathbf{0},t) = \hat{R} \cdot \hat{D}$

¹C. Schäfer et al., PRA 98, 043801 (2018),⁴V. Rokaj et al., J. Phys. B 51, 034005 (2018)

$$\hat{\pmb{A}}_{\perp}(\pmb{r}) pprox \hat{\pmb{A}}_{\perp}(\pmb{0}) \Rightarrow \int \mathrm{d}^3 r \; \hat{\pmb{J}}(\pmb{r},t) \cdot \hat{\pmb{A}}_{\perp}(\pmb{0},t) = \hat{\pmb{R}} \cdot \hat{\pmb{D}}$$

$$\hat{\boldsymbol{R}} = \sum_{l} |\boldsymbol{e}|(-\boldsymbol{r}_{l}+Z_{l}\boldsymbol{R}_{l}) \text{ and } \hat{\boldsymbol{D}} = \sum_{\boldsymbol{k},\lambda} \boldsymbol{\epsilon}(\boldsymbol{k},\lambda) \underbrace{\frac{1}{\sqrt{2\omega_{k}}} \left(\hat{a}_{\boldsymbol{k},\lambda} + \hat{a}_{\boldsymbol{k},\lambda}^{\dagger}\right)}_{=q_{\boldsymbol{k},\lambda}}$$

¹C. Schäfer et al., PRA 98, 043801 (2018),⁴V. Rokaj et al., J. Phys. B 51, 034005 (2018)

$$\hat{\pmb{A}}_{\perp}(\pmb{r}) pprox \hat{\pmb{A}}_{\perp}(\pmb{0}) \Rightarrow \int \mathrm{d}^3 r \; \hat{\pmb{J}}(\pmb{r},t) \cdot \hat{\pmb{A}}_{\perp}(\pmb{0},t) = \hat{\pmb{R}} \cdot \hat{\pmb{D}}$$

$$\hat{\boldsymbol{R}} = \sum_{l} |e|(-\boldsymbol{r}_{l} + Z_{l}\boldsymbol{R}_{l}) \text{ and } \hat{\boldsymbol{D}} = \sum_{\boldsymbol{k},\lambda} \epsilon(\boldsymbol{k},\lambda) \underbrace{\frac{1}{\sqrt{2\omega_{k}}} \left(\hat{a}_{\boldsymbol{k},\lambda} + \hat{a}_{\boldsymbol{k},\lambda}^{\dagger}\right)}_{=q_{\boldsymbol{k},\lambda}}$$

$$\hat{H}(t) = \hat{T} + \hat{W} + \sum \hbar \omega_k \hat{a}^{\dagger}_{\boldsymbol{k},\lambda} \hat{a}_{\boldsymbol{k},\lambda} - \hat{D} \cdot \hat{\boldsymbol{R}} + \frac{1}{2} \sum_{\boldsymbol{k},\lambda} \left(\boldsymbol{\epsilon}(\boldsymbol{k},\lambda) \cdot \hat{\boldsymbol{R}} \right)^2 \\ + \sum_{l} |\boldsymbol{e}| \left(\boldsymbol{v}(\boldsymbol{r}_l,t) - Z_l \boldsymbol{v}(\boldsymbol{R}_l,t) \right)$$

¹C. Schäfer et al., PRA 98, 043801 (2018),⁴V. Rokaj et al., J. Phys. B 51, 034005 (2018)

Ab-initio QED

Long-wavelength limit

Applications

o lifetimes and bath description¹¹

¹¹ J. Flick et al., arXiv:1803.02519 (2018)

Introduction Ab-initio QED Long-wavelength limit Applications Outlook Cavity QED: ab-initio lifetimes and bath description¹¹ mpsd

¹¹ J. Flick et al., arXiv:1803.02519 (2018)

¹¹ J. Flick et al., arXiv:1803.02519 (2018)

M.Ruggenthaler A

Ab-initio QED

Ab-initio QED

Long-wavelength limit

Applications

Applications of ab-initio QED theory †,12,13,14

Ab-initio QED

Long-wavelength limit

Applications

Conclusion and outlook

Conclusion

Ab-initio description via Pauli-Fierz field theory

- Ab-initio description via Pauli-Fierz field theory
- Many-body methods extended and implemented

- Ab-initio description via Pauli-Fierz field theory
- Many-body methods extended and implemented
- Universally applicable to light-matter problems

- Ab-initio description via Pauli-Fierz field theory
- Many-body methods extended and implemented
- Universally applicable to light-matter problems

Outlook

Full simulation of chemical reactions

- Ab-initio description via Pauli-Fierz field theory
- Many-body methods extended and implemented
- Universally applicable to light-matter problems

Outlook

- Full simulation of chemical reactions
- Fundamental physics (mass renormalization,...)

- Ab-initio description via Pauli-Fierz field theory
- Many-body methods extended and implemented
- Universally applicable to light-matter problems

Outlook

- Full simulation of chemical reactions
- Fundamental physics (mass renormalization,...)
- Alternatives (dressed KS, RDM theory and beyond)

- Ab-initio description via Pauli-Fierz field theory
- Many-body methods extended and implemented
- Universally applicable to light-matter problems

Outlook

- Full simulation of chemical reactions
- Fundamental physics (mass renormalization, ...)
- Alternatives (dressed KS, RDM theory and beyond)

Posters: 14. Real-time solutions of coupled Ehrenfest-Maxwell-Pauli-Kohn-Sham equations: fundamentals, implementation, and nano-optical applications (R. Jestädt), 19. Modification of excitation and charge transfer in cavity quantum-electrodynamical chemistry (C. Schäfer)