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Introduction

Question: What is the minimal set of quantized EM modes
we need to represent the system without approximations?

Answer: Emitter-centered / collective / bright EM modes

• For each frequency ω, one superposition of the bare
macroscopic QED modes couples to the emitter.

• Quantized / normalized correctly:

• All other modes (orthogonal superpositions of the )
uncoupled à drop from Hamiltonian:

• Electric field mode profile available (real!)

• Minimal complete Hamiltonian in an arbitrary dielectric
environment.
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tinue to lower thresholds and optimize operating parameters.
In an effort to overcome some of the material-related limitations
hampering applications of exciton-polaritons, as well as to ex-
plore novel light-matter states associated with distinct types of
excitons, several researchers have recently turned their attention
to organic materials [8–12]. While organic systems are generally
disordered, their optical transitions can have large transition
dipole moments allowing them to couple strongly to light at
room temperature. Several independent studies have already re-
ported polariton lasing/BEC [13, 14] and nonlinear interactions
with organic excitons [15] in microcavities.

Recently, plasmonic systems have emerged as a promising
alternative platform for exploring exciton-polaritons in an open
architecture. The "cavity" defining the resonator is no longer
a multilayer dielectric stack possessing a complex spectral re-
sponse, which facilitates the integration of exciton-polariton
devices with integrated photonics circuits. In these plasmonic
systems, previously shown to be highly suitable for photon las-
ing [16–20], the excitonic material can be easily integrated by
solution processing. The quality factors of plasmonic resonances
are much lower than their counterparts in dielectric microcavi-
ties. However, the subwavelength field enhancements generated
by resonant metallic nanostructures can significantly boost the
light-matter coupling. Indeed, strong plasmon-exciton coupling
has already been observed [10, 12, 21–26], but earlier attempts
toward achieving plasmon-exciton-polariton (PEP) lasing re-
mained unsuccessful due to the inefficient relaxation mechanism
of PEPs and the saturation of strong coupling at large pumping
fluences [22]. Here we demonstrate PEP lasing from an opti-
cally pumped array of silver nanoparticles coated by a thin layer
of organic molecules at room temperature, occurring at a low
threshold [27]. lower threshold than any previously reported
organic polariton laser . Strong coupling between excitons in the
organic molecules and collective plasmonic resonances of the
array forms PEPs. By increasing the PEP density through optical
pumping, we observe a pronounced threshold in the emission
intensity accompanied by spectral narrowing. Besides these
generic lasing characteristics, our system exhibits two rather
distinct features: first, the threshold power for PEP lasing is
reduced in parallel with a degradation of the quantum efficiency
of the material. This counter-intuitive behavior from the stand-
point of conventional laser physics is intimately related to the
onset of strong coupling and the emergence of new eigenstates,
i.e., PEPs. A second distinct feature of our PEP laser stems from
the fact that the nanoparticle array supports dark, as well as
bright modes. The mode that first reaches lasing threshold is
in fact dark below threshold. While dark mode photon lasing
has attracted significant interest in the plasmonics community
for several years, we provide the first report of lasing from a
dark mode in a strongly coupled plasmon-exciton system. Las-
ing from this dark (below threshold) mode also manifests in an
abrupt polarization rotation of the emitted light by 90� above
threshold.

We first characterize strong-coupling between excitons in an
organic dye and the lattice modes supported by an array of
silver nanoparticles through optical extinction measurements.
Subsequently, using numerical and semi-analytical techniques
we analyze the modes supported by the array and the compo-
sition of the associated PEPs, respectively. Photoluminescence
(PL) measurements on the sample pumped off-resonance pro-
vide the emission response at increasing PEP densities. At high
emitter concentration, we observe Rabi splitting, signature of
plasmon-exciton strong coupling, together with the appearance

of stimulated scattering and PEP lasing. By measuring the dis-
persion of the PL at several pump-fluences for both polarizations
we identify the dark mode responsible for PEP lasing in this sys-
tem.

2. RESULTS AND DISCUSSION

Fig. 1. (a) Normalized absorption (blue) and photolumines-
cence (red) spectra of the layer of PMMA doped with dye
molecules in the absence of the plasmonic array. The inset
shows an SEM image of the array of silver nanoparticles. (b)
Schematic illustration of the array covered with a thin layer of
PMMA doped with dye molecules.

Fig. 1 shows the normalized absorption and PL spectra of a
layer of PMMA doped with organic dye molecules. We use a ry-
lene dye [N,N0-Bis(2,6-diisopropylphenyl)-1,7- and -1,6-bis(2,6-
diisopropylphenoxy)-perylene-3,4:9,10-tetracarboximide] as an
emitter [28], due to its high photostability and low propensity
towards aggregation at high concentrations. Two distinct peaks
corresponding to the main electronic transition at E = 2.24 eV
and first vibronic sideband at E = 2.41 eV are evident in the
absorption spectra of the molecules. A layer of PMMA doped
with dye molecules with thickness of 260 nm is spin-coated on
top of the plasmonic array of silver nanoparticles. A SEM image
of the fabricated array is depicted in the inset of Fig. 1. The array
consists of particles with dimensions of 200 ⇥ 70 ⇥ 20 nm3 and
the pitch sizes along the x and y directions are 200 nm and 380
nm, respectively.

First, we measure the angle-resolved extinction of the
nanoparticle array when covered by an undoped layer of PMMA
(Figs. 2(a,c)). The polarization of the incident light is fixed, and
set to be either perpendicular (top row) or parallel (bottom row)
to the long axis of the nanoparticles as indicated by the arrow
in the inset. Here we take advantage of a particular type of
plasmonic modes that are supported by periodic arrays of metal
nanoparticles, the so-called surface lattice resonances (SLRs).
These modes are the result of the radiative coupling between
localized surface plasmon (LSP) resonances in the individual
nanoparticles enhanced by the in-plane diffracted orders of the
array, i.e., the Rayleigh Anomalies (RAs). Energy dispersions
and quality factors of these SLRs can be tailored by varying
the geometrical parameters and energy detuning between RAs
and LSP resonances [29, 30]. In addition, the enhanced in-plane
radiative coupling reduces the radiative losses associated to lo-
calized resonances [31] and the redistribution of the electromag-
netic field around the particles also reduces Ohmic losses [32],
creating narrow resonances with high quality factors [31, 33, 34].

By probing the sample under different polarizations and an-
gles of incidence, we couple to different resonances with distinct
electric field distributions and symmetries depending on which

• Large variety of complex cavity designs available
• “Cavity”: any photonic structure that confines light
• Can enhance and control light-emitter interactions

• Common theoretical models (e.g., Jaynes-Cummings)
treat a single (possibly lossy) quantized cavity mode

• Neglects the complex EM mode spectrum, and is only
valid when the mode is spectrally separated from others
and well-described by a Lorentzian spectral density
(corresponding to exponential decay)

• Highly nontrivial to quantize EM modes in an arbitrary
geometry with losses and material dispersion

• Formal solution: Macroscopic QED [1-4]

• Separate system into macroscopic (EM properties given
by dielectric function) and microscopic part (e.g., atom,
molecule, or generally few-level quantum emitter)

• Formally represent material by an infinite set of local
oscillators, , defined at each point in space, and for
each frequency ( )

• Hamiltonian (no direct dipole-dipole interaction!):

Here for simplicity: magnetic permeability µ = 1 [4]

• Electric field determined by classical EM Green’s function

• Dynamics of a single emitter at position r0 and direction n
determined by spectral density (local density of states):

• Purcell factor:

• Challenge: Formally, infinitely many modes everywhere
in space and frequency. Direct use (e.g., by discretization)
prohibitively expensive.

• Possible solutions:
• Integrate out EM part:
• Perturbation theory: Casimir-Polder, interatomic

Coulomb decay, etc. [4,5]
• Laplace transform / multiple scattering [6,7]

• Extract (few) quantized modes explicitly:
• Fit spectral density to sum of Lorentzians [7-13]
• Explicit quantization of quasinormal modes [14]

• In all cases: approximations necessary
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dimer, we find a very good agreement, as seen in Fig. 2,
showing the Purcell factor F P ¼ Γ=Γ0, where Γ0 is the
spontaneous emission rate in a homogeneous medium.
Although the agreement in Fig. 2 is already striking
(especially given the completely different nature of the
calculations [56]), we remark that the restriction to a few
dominant QNMs in the QNM-JC model, when applied to
spontaneous emission, is generally different, and typically
less accurate, than the use of the same approximation to the
Green’s function in a semiclassical approach. Whereas
the latter relies only on the expansion at a single point, the
QNM-JC model is based on integrals of the QNMs
throughout the resonator material to obtain Sc. For the
plasmonic dimer, we find Snradc ¼ 0.58 and Sradc ¼ 0.40.
In addition, Snradc and Sradc yield the nonradiative and
radiative beta factor, respectively, via βnrad ¼ Snradc =Sc
and βrad ¼ Sradc =Sc. See [56] for details of the QNM
calculation, f̃μðraÞ, and material parameters.
(II) Two-QNM-JC model.—We next discuss a case

where cross terms χμη of two QNMs μ, η ¼ 1, 2 cause
interference effects, clearly not available in phenomeno-
logical quantization approaches. Starting again from the
quantum Langevin equation in Eq. (6), we derive a
Lindblad master equation analogue to the one-mode case,
using the additional assumptions [27] that the two input
fields associated with F̂ μ (μ ¼ 1, 2) are independent from
each other and that the real parts of the eigenfrequencies ω1

and ω2 are not degenerate [63]. Again, following the
approach of Ref. [27], we now obtain the two-QNMmaster
equation

∂tρ ¼ −
i
ℏ
½Hsys; ρ% þ L½a%ρ; ð8Þ

where ωμ are no longer eigenvalues of the electromagnetic
part of the Hamiltonian, since an intermode coupling
appears. Instead, a pair of shifted eigenfrequencies ωs

μ is
formed [see Fig. 3(c)]. We stress that the Lindblad

dissipator L½a%ρ ¼
P

μ;ηχ
ð−Þ
μη ð2aηρa†μ − a†μaηρ − ρa†μaηÞ

contains also processes with interacting QNMs μ ≠ η.
Although the above off-diagonal coupling may seem

unusual, it is known that a significant mode interference,
such as a “Fano-type” resonance, can occur because of the
different phase terms of overlapping QNMs [11,64]. In the
QNM-JC model, this interference is captured by the off-
diagonal terms, as illustrated in Fig. 3, where we study the
electromagnetic response of the metal dimer from (I) on
top of a high-Q photonic crystal cavity [see Fig. 3(a)].
Figure 3(b) shows the two QNMs of interest and the
semiclassical result of the Purcell factor as calculated using
a two-QNM approximation [11,56]; Fig. 3(c) shows the
corresponding results of the QNM-JC model in this
pronounced QNM coupling regime [65]. The system
parameters indicate the bad cavity limit, where the
QNM-JC master equation consists of a Lindblad dissipator
for spontaneous emission of the form L½σ−%ρ ¼
Γð2σ−ρσþ−σþσ−ρ−ρσþσ−Þ, in which Γ ¼ Γdiag þ Γndiag

with a diagonal contribution Γdiag ¼
P

μSμμjg̃μj2γμ=
ðΔ2

μa þ γ2μÞ and a nondiagonal contribution Γndiag ¼P
μ;η≠μg̃μSμηg̃

'
ηKμη, which is here expressed in terms of

the coupling matrix Kμη¼½iðωμ−ωηÞþγμþγη%=½2ðΔμa−
iγμÞðΔηaþiγηÞ% [56]. Comparing the results in Fig. 3, one

FIG. 2. (a) Purcell factor F P as a function of the energy for the
plasmonic dimer in Fig. 1. Solid and dashed curves show the results
of the QNM-JCmodel and a semiclassical approach, using a single
QNM Green’s function approximation, respectively. (b) Normal-
ized spatial profile of the QNM of interest with ω̃cðeVÞ ¼
1.7786 − 0.0677i, corresponding to Q ¼ ωc=ð2γcÞ ≈ 13.

FIG. 3. (a) Gold dimer on top of a photonic crystal cavity,
supporting two overlapping QNMs with frequencies ω̃2ðeVÞ ¼
1.6063 − 0.0145i and ω̃1ðeVÞ ¼ 1.6428–0.0548i (mode 1 orig-
inates from the dimer). (b) QNM profiles and semiclassical
Purcell factor as a function of the energy. (c) QNM-JC Purcell
factor with diagonal contributions Γdiag (black dashed line,
scaled) and the full emission rate Γ ¼ Γdiag þ Γndiag (solid blue
line). Vertical solid and dashed lines show the shifted and original
eigenfrequencies, respectively.
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We present a general framework for cavity quantum electrodynamics with strongly frequency-dependent
mirrors. The method is applicable to a variety of reflectors exhibiting sharp internal resonances as can be
realized, for example, with photonic-crystal mirrors or with two-dimensional atomic arrays around
subradiant points. Our approach is based on a modification of the standard input-output formalism to
explicitly include the dynamics of the mirror’s internal resonance. We show how to directly extract the
interaction parameters from the comparison with classical transfer matrix theory and how to treat the non-
Markovian dynamics of the cavity field mode introduced by the mirror’s internal resonance. As an
application within optomechanics, we illustrate how a non-Markovian Fano-resonance cavity with a
flexible photonic-crystal mirror can provide both sideband resolution as well as strong heating suppression
in optomechanical cooling. This approach, amenable to a wide range of systems, opens up possibilities for
using hybrid frequency-dependent reflectors in cavity quantum electrodynamics for engineering novel
forms of light-matter interactions.
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A standard platform for cavity quantum electrodynamics
(CQED) [1–3] is the linear Fabry-Perot resonator; one
generally assumes two macroscopic, highly reflecting
mirrors that define spatially localized frequency-resolved
resonances inside the cavity. A full quantum description of
the cavity mode dynamics can be derived in the form of a
Langevin equation _aðtÞ ¼ −iωaaðtÞ − κaðtÞ þ

ffiffiffiffiffi
2κ

p
ainðtÞ,

where a is the annihilation operator of the field mode
with frequency ωa and decay rate κ, and ainðtÞ describes
delta-correlated input noise encompassing the effect of
the coupling to the continuum of outside modes [4]. The
solution, combined with the input-output relation
aoutðtÞ ¼ ainðtÞ −

ffiffiffiffiffi
2κ

p
aðtÞ, describes the quantum proper-

ties of the continuous outgoing light field aoutðtÞ. In such a
case, the quantum dynamics of the cavity field is
Markovian, the coupling to the continuum of outside
modes giving rise to an exponential time decay of the
intracavity field. A critical step in this derivation lies in
assuming that the reflectivity of the mirrors is essentially
flat around the resonance frequency of interest.
Many scenarios, however, strongly depart from this

situation as end mirrors can be made of reflective materials
exhibiting enhanced linear or nonlinear response around
frequencies corresponding to sharp internal modes (Fig. 1).
These effects can be achieved by patterning a subwave-
length grating or a photonic-crystal structure onto a
dielectric membrane [5–8], in semiconducting monolayers
[9–11], or with two-dimensional arrays of atoms trapped in
optical lattices [12–14]. Using such metamaterials with a
strongly frequency-dependent response as end mirrors in
Fabry-Perot resonators has been shown to result in

asymmetric transmission profiles potentially much nar-
rower than those obtained with frequency-independent
mirrors of comparable reflectivity [15] [Fig. 1(c)].
This manuscript provides a generalized approach to

CQED with mirrors possessing sharp internal resonances.
Our strategy is based on an extension of the standard

(b)
(c)

(a)

FIG. 1. Non-Markovian cavity. (a) The cavity mode a interacts
with two external continua bðωÞ, cðωÞ and an internal mirror
mode d. (b) Possible realizations of the resonant mirror: dielectric
membrane patterned with a photonic-crystal structure, two-
dimensional array of atoms. (c) Transmission of a cavity with a
resonant end mirror (solid blue line) exhibiting an asymmetric
Fano profile and with linewidth significantly reduced compared to
a Markovian cavity with conventional mirrors (dashed red line).
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coupled to the hybrid compound resonance can enter the SCR
in configurations, where neither the isolated nanoantenna nor
the cavity alone would access this regime. Aside from a
fundamental interest, these results hold promise for practical
applications, where the emitter quantum efficiency plays an
important role.
To investigate the influence of the hybrid cavity−antenna

structure on an emitter, we examine the local density of states
(LDOS). This electromagnetic quantity is connected to the
imaginary part of the Green’s tensor and thus to the power
dissipated by a dipole, which we calculate by means of full-wave
computations with COMSOL Multiphysics.17 Figure 2 displays

the normalized LDOS for a broadband FP−nanocone system
(black squares) as a function of the emission wavelength λ for
an emitter that lies at 10 nanometers from the nanocone close
to the antinode of the FP microcavity (see Figure 1b). Highly
enhancing nanoantennas, such as nanocones, facilitate reaching
the SCR with moderately low-Q cavities as shown below. We
identify two main regions of enhanced LDOS in Figure 2: a
double-peaked feature with a very broad line width at λ ∼ 750
nm and a narrower resonance around 820 nm.
It is instructive to compare the normalized LDOS to the

same configurations of a bare microcavity (blue circles) and an
isolated nanocone (green triangles) in Figure 2. The outcome
indicates that the broadband plasmon modes of the nano-
antenna and two transverse cavity modes with narrower line
widths interfere constructively to yield to two general scenarios:
a double-peaked structure for resonant modes coupling and a
shifted cavity resonance for off-resonant interaction. The latter

frequency change at longer wavelengths is attributed to the
common cavity red-shifts reported for small plasmonic
nanoparticles.18 Notice that the maximum LDOS values (∼3
× 103) for the off-resonant mode has been enhanced by 1 order
of magnitude with respect to the bare cavity mode and by a
factor of 3 with respect to the isolated nanocone over a fairly
narrow bandwidth. This enhancement comes as a result of the
intermediate values of both the quality factor (Qhyb ∼ 150, Qcone
∼ 14, QFP ∼ 510) and the mode volume of the hybrid
resonance (Vhyb ∼ 3.6 × 10−3λ3, Vcone ∼ 7.2 × 10−4λ3, VFP ∼
0.75λ3). These features make the detuned hybrid mode very
attractive for strong coupling as shown below. Furthermore, the
combination of the nanoantenna and cavity modes also leads to
dips in the LDOS values. Both the peak and dip result
respectively from constructive and destructive interference
events known from Fano phenomena19 for two resonant
systems with antithetic bandwidths (Qcone ∼ 14, QFP ∼ 510).
An important and attractive aspect of the broadband hybrid

cavity is that the enhancement effect can be tuned to different
frequencies over a very large spectral range by simply adjusting
the cavity length L (see inset in Figure 2). In fact, it is
remarkable that the LDOS is enhanced to such a degree at over
hundred nanometers wavelength detuning from the antenna
plasmon resonance, which in this case was set close to 750 nm.
Intuitively, the circulation of the optical energy in the
microcavity compensates for the lower plasmonic enhancement
of the LDOS at a large detuning. We note that this
phenomenon provides a unique and novel means for external
and selective manipulation of the emitter coupling to plasmonic
antennas.
To obtain a deeper insight into the different participating

resonant modes and to evaluate semianalytical expressions of
the Green’s tensor, we also used the quasinormal mode
(QNM) approach that is based on a modal expansion and the
Lorentz-reciprocity theorem.20 This enables determination of
the Purcell factor for single QNMs20 that is valid for any lossy
resonator (see implementation in ref 17), and it is derived from
the Green’s tensor with component c2EE/2ω(ω − ωr − iκ/
2),21 where E denotes the normalized field parallel to the
orientation of the dipole at its position,17 ωr is the QNM
resonance real frequency, and κ = ωr/Q denotes its full width at
half-maximum. The red lines in Figure 2 represent the
contribution from several QNMs, showing an excellent
agreement for the hybrid full-wave response, whereas additional
nonresonant modes would be necessary for describing the
suppressed LDOS values with respect to free space (cf. values
below 1 for the blue circles). The double-peaked LDOS arises
as a result of the interference of two nearly resonant QNMs,
consisting of a plasmonic-like mode and an FP-like one with
positive and negative values, respectively. Negative contribu-
tions are common features of nearly resonant QNMs,20 with
the total sum remaining positive and thus physical (cf. red line).
On the other hand, the detuned peak is mainly described by a
single FP−nanoantenna QNM (cf. its intensity distribution in
Figure 1b), whereas the broader off-resonant QNMs contribute
to the destructive interference dip.
A severe general limitation of plasmonic nanoantennas

concerns quenching of emission at very small distances caused
by nonradiative channels.11,22 To study the quenching behavior
of the detuned hybrid mode, we calculated the fraction of the
LDOS that is dissipated (LDOSnr) in the metallic nanostruc-
ture given by ξ = LDOSnr/LDOS as a direct measure for
quenching, where LDOSnr ∝∫ Im[ϵ]|E|2 dr, and Im[ϵ] is the

Figure 2. LDOS for a FP−nanocone hybrid (black squares), a bare
nanocone (green triangles), and a bare cavity (blue circles) versus the
emission wavelength (logarithmic vertical scale). All are normalized to
the LDOS in free space. The emitter lies at a s = 10 nm from a
nanocone near the cavity center (p = 150 nm, d = 280 nm, c.f.
parameter definitions in Figure 1) with its dipole moment along the y-
direction. The nanocone has a length, tip, and base of h = 140 nm, a =
20 nm, and b = 60 nm, respectively. The cavity parameters (R = 2.5
μm, t = 275 nm, and L = 559 nm) give access to the second TEM00
mode (λ ∼ 809 nm) and a hybrid TEM01* mode (λ ∼ 746 nm). The
dielectric functions for the nanocone and the mirrors were obtained
from a Drude−Lorentz fit to experimental data on gold.12 The red
lines correspond to QNM calculations.17 Inset: Normalized LDOS for
the detuned hybrid QNM contributions at different mirror lengths L.
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ABSTRACT: We show that a broadband Fabry−Perot
microcavity can assist an emitter coupled to an off-resonant
plasmonic nanoantenna to inhibit the nonradiative channels
that affect the quenching of fluorescence. We identify the
interference mechanism that creates the necessary enhanced
couplings and bandwidth narrowing of the hybrid resonance
and show that it can assist entering into the strong coupling
regime. Our results provide new possibilities for improving the
efficiency of solid-state emitters and accessing diverse realms of
photophysics with hybrid structures that can be fabricated using existing technologies.
KEYWORDS: quenching, nanoantennas, plasmonics, microcavities, strong-coupling, single-photon emitters

The excited state of a quantum emitter can decay radiatively
via spontaneous emission of photons or nonradiatively in

a process called quenching. The interplay between these two
decay channels crucially determines the application potentials
of solid-state emitters such as organic molecules, semi-
conductor nanocrystals, or color centers.1 While spontaneous
emission is known to be enhanced or inhibited by photonic
environments,2 the nonradiative decay channel is usually
thought to be an intrinsic property of the emitter and its
immediate surrounding.
The best-known modification of radiative rates is the so-

called Purcell effect, where a quantum emitter is coupled to a
conventional resonator of quality factor Q and mode volume
V.3 When the atom−photon interaction rate becomes larger
than both the cavity loss rate (κ) and the atomic coupling rate
to other competing modes, one also can reach the strong-
coupling regime (SCR),2 where photonic and atomic
excitations are coherently exchanged and hybridized.
A more recent alternative approach for accessing the Purcell

effect or the SCR places the emitter in the near field of
plasmonic nanoantennas.4−9 However, the close vicinity of the
emitter to metals results in dissipation and substantial coupling
to higher-order multipolar antenna modes,10,11 which in turn
causes an increase in the nonradiative rate that is faster than
those in the radiative decay.6,10 So far, few nanoantenna
configurations6−9 have succeeded in accessing interesting
radiative effects in competition with the nonradiative channels.
In this work, we study the coupling of a quantum emitter to a

hybrid structure consisting of a Fabry−Perot (FP) resonator
and a plasmonic nanoantenna. Figure 1 sketches an example of
the proposed device using a gold nanocone antenna.12 Hybrid

arrangements have recently considered the combination of
cavities with plasmonic nanoantennas for achieving Purcell
enhancement13−15 and strong coupling.16 In what follows, we
explore regimes where both radiative and nonradiative
properties of an emitter are improved if a cavity is hybridized
with a strongly detuned nanoantenna. Importantly, we
demonstrate that one can generally counteract and control
nonradiative channels from afar using a FP resonator. In
contrast to previous works, we also show that an emitter

Received: August 24, 2017
Published: November 21, 2017

Figure 1. (a) Sketch of the FP−nanoantenna hybrid: a dipole emitter
close to a plasmonic particle is embedded in a FP cavity. The axially
symmetric cavity has a curved mirror radius R and depth t spaced at
length L. The emitter position is characterized by p and d from the
origin O. Inset: Zoom of the emitter placed at distance s from a
metallic nanocone of length h and tip and base diameters a and b,
respectively. (b) Intensity distribution of the detuned FP−nano-
antenna mode (see also Figure 2).
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H = Ĥe +

1Z

0

d!
h
~!B̂†(!)B̂(!)� µ̂e~

p
J(!)

⇣
B̂(!) + B̂

†(!)
⌘i

<latexit sha1_base64="Ogxmx96OHd2/8pz2yDKFBV6tGzg="></latexit>

f̂(r,!)
<latexit sha1_base64="91eb+eRHr+alkYlgOFxs05K70Eg=">AAACDHicbVDLSgMxFM34rPVVdekmWIQKUmaqYJcFNy4r2Ad0SsmkmTY0jyHJCGWYD3Djr7hxoYhbP8Cdf2OmHUFbDwQO55xL7j1BxKg2rvvlrKyurW9sFraK2zu7e/ulg8O2lrHCpIUlk6obIE0YFaRlqGGkGymCeMBIJ5hcZ37nnihNpbgz04j0ORoJGlKMjJUGpbI/RibxOTLjIEzCNK38cJWe+5KTETqzKbfqzgCXiZeTMsjRHJQ+/aHEMSfCYIa07nluZPoJUoZiRtKiH2sSITxBI9KzVCBOdD+ZHZPCU6sMYSiVfcLAmfp7IkFc6ykPbDLbVC96mfif14tNWO8nVESxIQLPPwpjBo2EWTNwSBXBhk0tQVhRuyvEY6QQNra/oi3BWzx5mbRrVe+iWru9LDfqeR0FcAxOQAV44Ao0wA1oghbA4AE8gRfw6jw6z86b8z6Prjj5zBH4A+fjG4BFm9o=</latexit>

f̂(r,!)
<latexit sha1_base64="91eb+eRHr+alkYlgOFxs05K70Eg=">AAACDHicbVDLSgMxFM34rPVVdekmWIQKUmaqYJcFNy4r2Ad0SsmkmTY0jyHJCGWYD3Djr7hxoYhbP8Cdf2OmHUFbDwQO55xL7j1BxKg2rvvlrKyurW9sFraK2zu7e/ulg8O2lrHCpIUlk6obIE0YFaRlqGGkGymCeMBIJ5hcZ37nnihNpbgz04j0ORoJGlKMjJUGpbI/RibxOTLjIEzCNK38cJWe+5KTETqzKbfqzgCXiZeTMsjRHJQ+/aHEMSfCYIa07nluZPoJUoZiRtKiH2sSITxBI9KzVCBOdD+ZHZPCU6sMYSiVfcLAmfp7IkFc6ykPbDLbVC96mfif14tNWO8nVESxIQLPPwpjBo2EWTNwSBXBhk0tQVhRuyvEY6QQNra/oi3BWzx5mbRrVe+iWru9LDfqeR0FcAxOQAV44Ao0wA1oghbA4AE8gRfw6jw6z86b8z6Prjj5zBH4A+fjG4BFm9o=</latexit>

• Modes associated to emitters i and j are not orthogonal.

• Overlap can be integrated analytically!

• Orthogonalize:

• Hamiltonian describes N emitters coupled to N continua

• Electric field operator:
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†
j (!)

⌘

<latexit sha1_base64="S5RYGJBTomEtqj5//YxHWbiI7w4="></latexit>
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• Macroscopic QED can be used to construct an explicit set
of emitter-centered EM modes that provide a minimal
but complete basis for the quantum electrodynamics of a
set of emitters in arbitrary dielectric environments.

• There are N photonic continua for N dipole emitters.
• The EM mode functions can be explicitly calculated and

are real and divergenceless.
• System is Hermitian – no losses (price to pay: continua).
• While the formal construction requires the use of local

oscillators at all points in space and frequencies, the final
expressions only depend on the (imaginary part of) the
classical EM Green’s function connecting the emitters
between each other and/or measurement points.

• Approach can be used as starting point for either
advanced numerical approaches, e.g., using tensor
networks [15,16] or the cumulant expansion (poster M.
Sánchez-Barquilla), or for more approximate treatments.

• Outlook:
Beyond dipole approximation?
Role of gauge (here: multipolar)?
Formal approach to obtain simplified models?

Example systems

Discussion

R.-Q. Li et al., PRL 117, 107401 (2016)

the TO spectrum. These can be identified as SP resonances
of increasing multipolar order. We can infer that the
maximum that dominates all the spectra in Figure 1(b) is
caused by the pseudomode (ωPS) emerging from the spectral
overlapping of higher order SPs [16]. Importantly, these are
darker (weakly radiative) modes strongly confined at the gap
region, which explains why our quasistatic description is
valid at ωPS even for R ¼ 240 nm.
Now we investigate the spectral density across the

gap cavity. This magnitude governs SP-QE interactions
(see below), and can be expressed as JðωÞ ¼ ðμ2Eω3=
6π2ϵ0ℏc3ÞPðωÞ. Figure 2(a) shows TO-JðωÞ evaluated at
zE ¼ δ=2 and normalized to μ2E=R

3 for different δ=R. For
small gaps, the spectral density is maximized, and the
contribution from different SPs is apparent. For larger gaps,
JðωÞ decreases, all maxima blue-shift and eventually
merge at the pseudomode position. Importantly, Fig. 2(a)
shows a universal trend, valid for all QEs and R (within
the quasistatic approximation). Therefore, for a given δ=R,
large μE and small R must be used to increase plasmon-
exciton coupling.

Once the spectral density is known, the Wigner-
Weisskopf problem [24] can be solved. It establishes that
the equation governing the dynamics of the excited-state
population, nðtÞ ¼ jcðtÞj2, for an initially excited QE is

d
dt

cðtÞ ¼ −
Z

t

0
dτ

Z
∞

0
dωJðωÞeiðωE−ωÞðt−τÞcðτÞ: ð1Þ

Figures 2(b) and 2(c) render the QE population at the center
of the cavity in panel (a) as a function of time and gap size.
The spheres radius is 120 nm (so that 1≲ δ≲ 10 nm), and
μE ¼ 1.5 e nm (InGaN/GaN quantum dots at 3 eV [30]).
The emitter is at resonance with the lowest (dipolar) SP (b)
and with the pseudomode (c) maxima in Fig. 2(a),
respectively. Note that the former disperses with gap size,
whereas ωE ¼ ωPS for the latter. We can observe that both
configurations show clear oscillations in nðtÞ, which
indicates that coherent energy exchange is taking place.
In this regime, strong coupling occurs, and the nanocavity
supports PEPs. However, for δ > 3 nm, the reversible
dynamics in the population is lost in both panels; QEs

FIG. 2. (a) Normalized JðωÞ at the gap center versus frequency
and δ=R. (b),(c) nðtÞ versus time and gap size for R ¼ 120 nm
and μE ¼ 1.5 e nm. The QE is at resonance with the dipolar
SP mode in (b) and with the pseudomode in (c). (d) nðtÞ for
δ ¼ 1.5 nm (see white dashed lines) and two ωE: 1.7 (green) and
3.4 (red) eV. Black dotted line corresponds to ωE ¼ 1.7 eV
obtained through the fitting of JðωÞ at ωPS.

(a)

(b)

FIG. 1. (a) QE placed at the gap between two metal spheres of
permittivity ϵðωÞ and embedded in a dielectric medium ϵD. The
QE dipole strength, position, and frequency are μE, zE, and ωE.
(b) Normalized Purcell factor at the gap center for R1;2 ¼ R and
δ ¼ R=15. Color dots: EM simulations for different R. Black line:
TO prediction. Insets: induced charge distribution for the lowest
4 SP modes discernible in the spectrum (color scale is saturated
for clarity).
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