Diagrammatic Monte Carlo approach to angular momentum in quantum many-body systems

<u>Giacomo Bighin¹</u>, Timur Tscherbul², and Mikhail Lemeshko¹ ¹Institute of Science and Technology Austria, ²University of Nevada, Reno

Institute of Science and Technology

IMPURITIES AND ANGULAR MOMENTUM

Motivation for the study of composite impurities, i.e. impurities possessing angular momentum, comes from many different fields. They can be realized as:

- Molecules embedded into helium nanodroplets.
- Ultracold molecules and ions.
- Electronic excitations in Rydberg
 atoms.
- Angular momentum transfer from **electrons** to a **crystal lattice**.

DIAGRAMS AND UPDATES

Moving particle: *linear* momentum circulating on lines.

Feynman rules

Each free propagator $\lambda_i \mu_i$

Rotating particle: angular momentum circulating on lines.

Image from: J. P. Toennies and A. F. Vilesov, Angew. Chem. Int. Ed. 43, 2622 (2004).

THE ANGULON

The **angulon quasiparticle**: a quantum rotor dressed by a field of many-body excitations.

Each phonon propagator $\sum_{\lambda_i \mu_i} (-1)^{\mu_i} D_{\lambda_i}$ $\lambda_i \mu_i$ Each vertex $(-1)^{\lambda_i} \langle \lambda_i | |Y^{(\lambda_j)}| | \lambda_k \rangle \begin{pmatrix} \lambda_i & \lambda_j & \lambda_k \\ \mu_i & \mu_j & \mu_k \end{pmatrix}$

 $\sum_{\lambda_i \mu_i} (-1)^{\mu_i} G_{0,\lambda_i}$

The configuration space is **larger** than that of the Fröhlich polaron: in the diagram above j and λ can couple to give j' in many different ways. The configuration space is also **essentially different**: consider the second diagram below, angular momentum is not conserved on each phonon line (i.e. a phonon line subtracts 0 quanta of angular momentum, but gives back 2)...

....but it must be conserved on each 1-particle-irreducible component.

Solution

DIAGRAMMATIC MONTE CARLO

General structure of an impurity problem: $\hat{H} = \hat{H}_{imp} + \hat{H}_{bos} + \hat{H}_{imp-bos}$

DiagMC idea: set up a stochastic process sampling among all diagrams. **Configuration space:** diagram topology, phonons internal variables, times... The number of variables varies with the topology!

How: ergodicity, detailed balance $w_1p(1 \rightarrow 2) = w_2p(2 \rightarrow 1)$, achieved with a two-step update (proposal+acceptance/rejection).

Result: each configuration is visited with probability \propto its weight.

Works in continuous time and in the thermodynamic limit: no finite-size

Shuffle update: select one 1-particle-irreducible component, then shuffle the momenta couplings to another allowed configuration, keeping phonon momenta fixed but including configurations in which a phonon arc sub-tracts/gives back a different number of quanta.

The Add and Remove updates now only act on phonon lines which add/subtract the same number of quanta of angular momentum.

This scheme allows us to **visit all diagrams**.

Results

The ground-state energy, the energy of the first two excited states and the quasiparticle weight for the angulon are obtained by fitting the long-imaginary-time behaviour of G_j with

$$G_j(\tau) = Z_j \exp(-E_j \tau)$$

as a function of the dimensionless bath density \tilde{n} . They are compared with the weak- and strong-coupling theories.

effects or systematic errors.

For the Fröhlich polaron three updates are enough to explore all possible diagrams:
✓Add update: adds a new arc to a diagram.
✓Remove update: removes an arc from the diagram.
✓Change update: modifies the total length of the diagram.

REFERENCES

Main references: GB, T.V. Tscherbul and M. Lemeshko, Phys. Rev. Lett. **121**, 165301 (2018). GB and M. Lemeshko, Phys. Rev. B **96**, 085410 (2017).

DiagMC: N. Prokof'ev and B. Svistunov, Phys. Rev. Lett. 81, 2514 (1998).

Angulon: R. Schmidt and M. Lemeshko, Phys. Rev. X 6, 011012 (2016).
R. Schmidt and M. Lemeshko, Phys. Rev. Lett. 114, 203001 (2015).
Y. Shchadilova, "Viewpoint: A New Angle on Quantum Impurities", Physics 10, 20 (2017).

CONCLUSIONS

- A technique for **molecular simulations** using the DiagMC framework.
- Angular momentum and rotations can be described with DiagMC. The configuration space is bigger, and an additional update is needed.
- Works naturally in the **thermodynamic limit** and in **continuous time**: no finite-size effect, no systematic errors.
- Straightforward access to the **Green's function** and to angular momentum properties: they are encoded in the formalism.