Laser Refrigeration using Exciplex Resonances in Gas filled Hollow-Core Fibres

Christian Sommer, MPL, Erlangen, Germany July 2019

Macroscopic Laser Refrigeration

Macroscopic Laser Refrigeration

 Optomechanics: Cooling resonator and membrane modes to the ground state

 Laser cooling: Anti-Stokes fluorescence cooling for macroscopic solid state cooling

Nature 478, 89-92 (2011)

Macroscopic Laser Refrigeration

Laser cooling by collisional redistribution (Weitz group @ Bonn, Germany)

Nature 461, 70 (2009)

Cooling Process for Rubidium-Argon Collisions

Potential curves for the collision modified Rubidium D1 line:

A red detuned laser beam $\omega_{\rm L}$ pumps population from the ground state to the excited state at the collision event

After the collision event the Rubidium atom decays back to the ground state with ω_0 blue shifted from the laser frequency

$$\Omega = \omega_0 - \omega_{
m L}$$

Cooling Process for Rubidium-Argon Collisions

Potential curves for the collision modified Rubidium D1 line:

Excited State Population

Theoretical model (Every collision event resembles an excitation pulse):

 $\tilde{\chi}_R(z) = -\tilde{d}_{eg} \mathcal{E}(z)/\hbar$

Rotating frame with $\omega_{
m L}$

Excited State Population

We derive Diffusion equation on the Blochsphere

$$\partial_t u = \frac{\mathcal{D}(z)}{\sin(\theta)} \left\{ \partial_\theta \left[\sin(\theta) \partial_\theta \right] u + \frac{1}{\sin(\theta)} \partial_{\varphi \varphi} u \right\} -\gamma u + \frac{\gamma}{\pi} \delta(\cos(\theta) - 1),$$

Solution starting from the groundstate

$$u = \sum_{n=0}^{\infty} \frac{2n+1}{4\pi} \left[\frac{(\xi_n(z) - \gamma)e^{-\xi_n(z)t} + \gamma}{\xi_n(z)} \right] P_n(\cos\theta)$$

Diffusion constant

 $\mathcal{D}(z) = \tilde{\chi}_R^2(z) \kappa \tau^2 / \pi \propto \mathcal{P}(z)$

$$\xi_n(z) = \mathcal{D}(z)n(n+1) + \gamma$$

Excited State Population

Excited state population

$$\rho_{ee}(z,t) = \left(1 - \int_{-1}^{1} d(\cos\theta) u(\theta, z, t) \cos\theta\right)/2$$

$$\rho_{ee}(t,z) = \frac{\mathcal{D}(z)}{2\mathcal{D}(z) + \gamma} \left(1 - e^{-(2\mathcal{D}(z) + \gamma)t}\right)$$

Power Absorption

Absorption HC-PCF hollow-core photonic crystal fiber

Power change due to absorption over the fiber extension:

$$d\mathcal{P}(z) = -\gamma \hbar \omega_{\rm L} \pi r^2 n_{\rm M} \rho_{ee}(z) dz$$

 $\rho_{ee}(t,z) = \frac{\mathcal{D}(z)}{2\mathcal{D}(z) + \gamma}$

$$\mathcal{D}(z) = \tilde{\chi}_R^2(z) \kappa \tau^2 / \pi \propto \mathcal{P}(z)$$

Power Absorption

The absorbed power is the inverse function of:

$$z(\mathcal{P}) = \frac{(\mathcal{P}_{in} - \mathcal{P})}{\mathcal{A}} - \frac{1}{\mathcal{B}\mathcal{A}} \ln\left(\frac{\mathcal{P}}{\mathcal{P}_{in}}\right)$$

 $\mathcal{P} \in \{0, \mathcal{P}_{in}\}$

 $\begin{aligned} \mathcal{BP}_{in} \gg 1 & (\text{linear regime}) \\ \mathcal{P}(z) = \mathcal{P}_{in} - \mathcal{A}z & \text{Strong light} \\ \text{confinement in a fibre} \\ \mathcal{BP}_{in} \ll 1 & (\text{exponential regime}) \\ \mathcal{P}(z) = \mathcal{P}_{in}e^{-\mathcal{AB}z} & \text{Beer-Lambert law}_{(\text{Weitz experiment})} \end{aligned}$

 $\mathcal{A} = \frac{1}{2} \hbar \omega_{\mathrm{L}} \gamma \pi r^{2} n_{\mathrm{M}},$ $\mathcal{B} = \frac{2 \tilde{d}_{eg}^{2} \sigma_{\mathrm{cool}} \sqrt{3k_{\mathrm{B}}}}{\hbar^{2} \pi^{2} \epsilon_{0} \sqrt{\mu} \gamma c} \frac{\sqrt{T} n_{\mathrm{X}} \tau^{2}}{r^{2}}$ $\stackrel{1.0}{\sim} \prod_{A = 1bar}^{1.0} \prod_{A = 5bar}^{0.8} \prod_{A = 5bar}^$

Cooling Power

Total cooling power up to the fibre length l

$$\mathcal{P}_{cool} = \frac{\Omega}{\omega_{\rm L}} \int_{\mathcal{P}_{in}}^{\mathcal{P}(\ell)} d\mathcal{P}(z) = \frac{\Omega}{\omega_{\rm L}} (\mathcal{P}_{out} - \mathcal{P}_{in})$$

Heating power over the fibre length l

$$\mathcal{P}_{heat} = 2\pi k_g \frac{T_e - T}{\ln r_e/r} \ell$$

 $\begin{aligned} & \text{Gas-Glass interface temperature} \\ & \mathcal{P}_{cool} + \mathcal{P}_{heat} = 0 \\ & (\delta T)_{max} = \gamma n_{\text{M}} \frac{\hbar\Omega}{4k_g} r^2 \ln\left(\frac{r_e}{r}\right) \end{aligned}$

Cooling Rate

Cooling rate:

 $\beta_{cool}(T) = -\mathcal{P}_{cool}/E_{kin}(T)$

(linear regime) $\beta_{cool}^{lin}(T) \approx \frac{\hbar\Omega}{k_{\rm B}T} \frac{n_{\rm M}}{n_{\rm M} + n_{\rm X}} \gamma$

(exponential regime (Weitz experiment))

 $\beta_{cool}^{exp}(T) \approx \mathcal{BP}_{in}\beta_{cool}^{lin}(T) \quad \mathcal{BP}_{in} \ll 1$

Fibre Stack

Fibrestacks where the **outside** insulates the **inner fibre** allowing to reach **lower temperatures** in the center

(simulation results: heat equation)

Comparison with experimental results

Nature 461, 70 (2009)

Simulations using parameters from Nature 461, 70 (2009)

Conclusion

Strong fibre cooling in room temperature environment (no vacuum and temperature shielding required)

Up to 10 - 100 K can be extracted from the gas mixture and possibly from the close environment.

Thanks for your Attention!

$$\dot{\boldsymbol{R}} = \boldsymbol{\chi}_R \times \boldsymbol{R} \qquad (\theta, \varphi) \in [0, \pi) \times [0, 2\pi)$$

 $d\theta = -\tilde{\chi}_R \sin(\varphi) dt$

$$\begin{split} \Phi_{n+1}(m) &= p_{+} \Phi_{n}(m+1) + p_{0} \Phi_{n}(m) + p_{-} \Phi_{n}(m-1) \\ &= \left(\frac{1}{\pi} + \frac{\Delta\theta}{2\pi} \cot(m\Delta\theta)\right) \Phi_{n}(m+1) \\ &+ \left(1 - \frac{2}{\pi}\right) \Phi_{n}(m) \\ &+ \left(\frac{1}{\pi} - \frac{\Delta\theta}{2\pi} \cot(m\Delta\theta)\right) \Phi_{n}(m-1) \qquad \Delta\theta = \tilde{\chi}_{R}\tau \end{split}$$

$$\Phi_{n+1}(m) - \Phi_n(m) = \frac{1}{\pi} \Big(\Phi_n(m+1) + \Phi_n(m-1) \\ -2\Phi_n(m) + \frac{\Delta\theta}{2} \cot(m\Delta\theta) \\ \times \left(\Phi_n(m+1) - \Phi_n(m-1) \right) \Big)$$

$$\tau_{\kappa}\partial_{t}\Phi \cong \frac{\Delta\theta^{2}}{\pi} \left(\partial_{\theta\theta}\Phi + \cot(\theta)\partial_{\theta}\Phi\right)$$
$$p_{0} = 1 - 2/\pi - p_{\gamma} \qquad p_{\gamma} = \gamma\tau_{\kappa} \qquad \gamma\tau_{\kappa}\delta_{0m}$$
$$\partial_{t}u = \mathcal{D}\left\{\frac{1}{\sin(\theta)}\partial_{\theta}(\sin(\theta)\partial_{\theta}u) + \frac{1}{\sin^{2}(\theta)}\partial_{\varphi\varphi}u\right\}$$
$$-\gamma u + \frac{1}{\pi}\delta(\cos(\theta) - 1)$$

$$\partial_t u = \frac{\mathcal{D}(z)}{\sin(\theta)} \left\{ \partial_\theta \left[\sin(\theta) \partial_\theta \right] u + \frac{1}{\sin(\theta)} \partial_{\varphi \varphi} u \right\} \\ -\gamma u + \frac{\gamma}{\pi} \delta(\cos(\theta) - 1),$$

$$u = \sum_{n=0}^{\infty} \frac{2n+1}{4\pi} \left[\frac{(\xi_n(z) - \gamma)e^{-\xi_n(z)t} + \gamma}{\xi_n(z)} \right] P_n(\cos\theta)$$

 $\xi_n(z) = \mathcal{D}(z)n(n+1) + \gamma$

$$\rho_{ee}(t,z) = \frac{\mathcal{D}(z)}{2\mathcal{D}(z) + \gamma} \left(1 - e^{-(2\mathcal{D}(z) + \gamma)t}\right)$$

