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Introduction

Quantum electrodynamic (QED) calculations quickly run into the infamous
exponential wall and as a consequence one is tempted to apply historic ap-
proximation strategies outside their regime of validity. [1]
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Flgu re 1: Photonic influence on the ground-state density for weak coupling A = 0.005. The 2-level approximation (b), including

counter-rotating terms, completely fails. More details and examples are discussed

in [1]
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Real-space model
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soft-coulomb molecule, 2 electrons, 1 mode.

Molecular correlation under cavity influence
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Flgu re 3: Natural occupations of p(x1q, x{q’) with and without photonic cou-
pling for frequency hw = 12.62 eV, setupl.

Excitation transfer

Initial-state S~ (n) ® ¥4(n) ® 1,, quench A(t) = Ho + 0(t) [H Ty ﬁep} .
Calculate n'th order probability of transferring excitation from D to A
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Flgu re 4: Integrated first-order excitation energy transfer
Ei(T) = fOT dtei(t) for T = 60.5 fs for different interatomic
distances. The Coulombic case (blue) decays as expected and
is multiplied by a factor of 400 here to present the otherwise
vanishingly small purely longitudinal transfer. Setup?2
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Figure 0: Ei(T) with interatomic distance 42.3 A and

weak coupling (for the reference frequency w,.r = 2.340 eV
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different integration times T = {15,60, 135}fs. Setup2
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Figure D: First-order (Upper) and second-order (Lower)
excitation energy transfer for weak coupling (for the reference
frequency wyer = 2.340eV, this is g/wpr = 0.0058) with in-
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teratomic distance 42.3 A. Setup?2
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Flgu re (: Hopfield coefficients for the middle polariton with
interatomic distance 21.2 A for different frequencies. The
coupling is given with respect to the reference frequency wer =
we have g/wrr = 0.0058) for different frequencies and three 2.340eV. For w = 2.50eV/, we observe equal weights of D and
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A. In line with [3]. Setup2
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:igu re 2: Full one-dimensional system with asymmetric
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Linear perturbation of charge-transfer state (singlet, large occupation on D)

with H(t) = H + FEO(tT).

a) Extremum charge transfer ¢ (T)

b) MB spectrum g/hAw = 0.107
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Figure 8: (A) Integrated charge transfer (£ = 1, w = 11.97eV). New (inverse) maxima of charge transfer arise, and they are
connected to avoided crossings of the initial many-body eigenstate with polariton many-body (MB) eigenstates in (B). (C,D) density-
difference n(x, t) — n(x,0) for the indicated interatomic distances. Setupl
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Photon induced correlation
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Electron-
Connection of DFT and many-body
perturbation theory opens a path for
the development of accurate function-
als. lts limitation is based on the order
of perturbation diagram included.[4]
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First-principles tools
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Multi-trajectory and BBGKY

Ensemble approach, tricky to capture
interferences, first-principles feasible

[5]. Truncation of the BBGKY hier-

archy to self-consistent second Born

level gives excellent results. [[6],/n
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Also strongly correlated approaches ¢4(rq, t) are possible. [7]
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