

Plasmon-Exciton Polaritons at the Single-Molecule Level

Antonio I. Fernández-Domínguez

Universidad Autónoma de Madrid, Spain

Surface Plasmons

Collective conduction electron oscillations at metal-dielectric interfaces, can couple to electromagnetic fields. Two families:

Limitation: Narrow-band operation \rightarrow Plasmon hybridization through nm gaps

Baumberg et al. Nature Materials 18, 668 (2019)

Plasmonic nanocavities:

Chikkarady et al. Nature 7, 535 (2016)

Towards plasmonic nanocavities and single emitters:

QEs: quantum dots, diamond vacancies, dye molecules, J-aggregates, TMDs...

Shegai, Pelton, Sandhogar, Bozhevolnyi, Lukin, Sanvitto, Liedl, Raschke, Mikkelsen, Hecht, Baumberg...

Molecular Polaritonics 2019

Single QE strong coupling in plasmonic gap cavities

- exploring \vec{E}_{C}

Photon correlations in QE ensembles coupled to a single SP

ε2

 R_0^{-1}

 R_2

Е_П

- exploring N

Ζ

- exploring $\vec{\mu}$

What kind of EM solutions are we interested in?

Strong light-matter interactions require sub-wavelength confinement of electromagnetic fields: **quasi-static regime**.

$$E(t) = E(\omega)e^{-i\omega t}$$
 with $E(\omega) = -\nabla\varphi(\omega)$ and $\nabla[\epsilon(\omega)\nabla\varphi(\omega)] = 0$

Radiative losses:

Correction due to the self-field: $\mu = \alpha_0(\omega)[E_{inc} + E_{self}] = \alpha_{corr}(\omega)E_{inc}$

Transformation Optics description of plasmonic dimers

J. Pendry et al., Nat. Phys. 9, 518 (2013), R. Zhao et al., Phys. Rev. Lett. 111, 033602 (2013)

Plasmonic dimers as nanocavities and nanoantennas (R_{1,2}=R, δ =R/15)

 $\sigma(\omega) \propto \operatorname{Im}\{\alpha_{\dim}(\omega)\} \propto R^3$

R.-Q. Li et al., Phys. Rev. Lett. 117, 107401 (2016); ACS Photonics 5, 177 (2018).

Transformation Optics description of plasmonic cavities

Transformation Optics description of plasmonic cavities

Master equation parametrization ($\omega_{l,\sigma}$, γ , $g_{l,\sigma}$).

$$\begin{split} \hat{H}_{\text{sys}} &= \omega_i \hat{\sigma}_i^{\dagger} \hat{\sigma}_i + \sum_{n,\sigma} \omega_{n,\sigma} \hat{a}_{n,\sigma}^{\dagger} \hat{a}_{n,\sigma} + \sum_{n,\sigma} g_{n,\sigma} [\hat{\sigma}_i^{\dagger} \hat{a}_{n,\sigma} + \hat{\sigma}_i \hat{a}_{n,\sigma}^{\dagger}], \\ &\frac{\partial \hat{\rho}}{\partial t} = i [\hat{\rho}, \hat{H}_{\text{sys}}] + \sum_{n,\sigma} \frac{\gamma_m}{2} \mathcal{L}_{\hat{a}_{n,\sigma}} [\hat{\rho}], \end{split}$$

Conditions for plasmon-exciton strong coupling:

R.-Q. Li et al., Phys. Rev. Lett. 117, 107401 (2016); ACS Photonics 5, 177 (2018).

A step backwards to move forward: 2D model

Full spatial and orientation dependence:

Multipolar sources:

$$P_{\mu}(\omega) = \frac{8}{\mu^{2}} \operatorname{Im} \{ \mu \mathbf{G}(\mathbf{r}, \mathbf{r}_{\text{QE}}) \mu \}_{\mathbf{r}=\mathbf{r}_{\text{QE}}},$$
$$P_{Q}(\omega) = \frac{16c^{2}}{\omega^{2}Q^{2}} \operatorname{Im} \{ (\mathbf{Q}\nabla) (\nabla' \mathbf{G}(\mathbf{r}, \mathbf{r}')) \mathbf{Q} \}_{\mathbf{r}, \mathbf{r}'=\mathbf{r}_{\text{QE}}}.$$

Radiative reaction: dipolar moments

Dark-field spectroscopy

Master Equation:
$$\frac{\partial \hat{\rho}'}{\partial t} = i[\hat{\rho}', \hat{H}'_{exp}] + \sum_{n,\sigma} \frac{\gamma_{n,\sigma}}{2} \mathcal{L}_{\hat{a}_{n,\sigma}}[\hat{\rho}'] + \frac{\gamma_i^{r}}{2} \mathcal{L}_{\hat{\sigma}_i}[\hat{\rho}']$$

Dipolar moment and cross section: $\hat{M} = \sum_{n} \mu_n \hat{a}_{n,+1} + \mu \hat{\sigma}_{\mu} \sigma_{\rm sca}(\omega_L) = \text{Tr}\{\hat{\rho}_{\rm SS}'(\omega_L)\hat{M}\}^2$

A. Cuartero-Gonzalez et al. arXiv:1905.09893 (2019)

Purcell enhancing light-forbidden transitions

Rivera et al., Science 353, 6296 (2016)

Spectral density for dipolar and quadrupolar excitons:

Surface plasmon chirality

REPORTS

Circularly polarized dipole sources allow the directional excitation of tightly confined SPs.

Coherent and dissipative coupling between QE

González Tudela et al. PRL 106, 020501 (2011)

Surface plasmons allow tuning the balance between QEs coherent and dissipative coupling.

Chiral quantum optics

Peter Lodahl¹, Sahand Mahmoodian¹, Søren Stobbe¹, Arno Rauschenbeutel², Philipp Schneeweiss², Jürgen Volz², Hannes Pichler^{3,4} & Peter Zoller^{3,4}

26 JANUARY 2017 | VOL 541 | NATURE | 473

Chiral one-photon devices: non-reciprocal quantum networks, topological effects

BOX 3 Master equation for a cascaded quantum system

J. C. López-Carreño et al. PRL 115 196402 (2015).

Dissipative coupling behind the cascaded formalism for neighbouring QEs.

Master equation mapping (two identical 2LSs)

Non-reciprocal conditions: A. Metelman et al., Phys. Rev. X 5,021025 (2015).

Deviations from the analytical prediction at small |x| and rapid decay of γ_{12} : chirality at the nanoscale

Z↑(1)

х

 $\epsilon(\omega)$

 ω_0

(2)

Simplest plasmonic platform

Increasing z the Dyadic Green's function is no longer governed by the plasmon pole: **Deviations from the chiral conditions.**

$$\mathbf{G}(\mathbf{r}_{\parallel}, z, z') = \frac{\mathrm{i}}{8\pi^2} \int \frac{\mathrm{d}\mathbf{k}_{\parallel}}{(\omega/c)^2 k_{\parallel}} e^{\mathrm{i}\mathbf{k}_{\parallel}\mathbf{r}_{\parallel}} \left(1 + r_{\mathrm{p}} e^{\mathrm{i}k_{z}^{+}(z+z')}\right) \begin{pmatrix} k_{x}^{2}k_{z}^{+} & k_{x}k_{y}k_{z}^{+} & k_{x}k_{\parallel}^{2}\\ k_{x}k_{y} & k_{y}^{2}k_{z}^{+} & k_{y}k_{\parallel}^{2}\\ -k_{x}k_{\parallel}^{2} & -k_{y}k_{\parallel}^{2} & -k_{\parallel}^{4}/k_{z}^{+} \end{pmatrix}$$

Quasichiral regime: amplitude conditions are met, phase conditions are not (shaded areas).

Incoherent pumping and emission spectrum

Weak incoherent pumping of the two QEs:

$$\begin{split} \frac{\partial \rho}{\partial t} &= i[\rho, H] + \frac{\gamma_0}{2} \{ \mathcal{L}_{\sigma_1}[\rho] + \mathcal{L}_{\sigma_2}[\rho] \} + \frac{\gamma_{12}}{2} \{ 2\sigma_1 \rho \sigma_2^{\dagger} - \sigma_1^{\dagger} \sigma_2 \rho - \rho \sigma_1^{\dagger} \sigma_2 \} + \\ &+ \frac{\gamma_{12}^{*}}{2} \{ 2\sigma_2 \rho \sigma_1^{\dagger} - \sigma_2^{\dagger} \sigma_1 \rho - \rho \sigma_2^{\dagger} \sigma_1 \} + \frac{P_0}{2} \{ \mathcal{L}_{\sigma_1}[\rho] + \mathcal{L}_{\sigma_2}[\rho] \}^{\dagger} \end{split}$$

Using the Quantum Regression Theorem, analytical evaluation of the emission spectrum:

$$S(\omega) = \frac{1}{\pi \langle \xi^{\dagger} \xi \rangle} \lim_{t \to \infty} \operatorname{Re} \left\{ \int_{0}^{\infty} d\tau \langle \xi^{\dagger}(t) \xi(t+\tau) \rangle e^{i\omega\tau} \right\}$$

with $\xi = \sigma_1 + \sigma_2$.

We explore the quasichiral regime, in which:

$$\frac{|g_{12}|}{|\gamma_{12}|} = \frac{1}{2}, \ |g_{12}| = \frac{\gamma_0}{2}$$

Sharp features emerge in quasichiral emission spectra

Incoherent pumping and emission spectrum

Analytical expression for the spectrum:

 $S(\omega) = \sum_{i=1}^{4} S_i(\omega) = \frac{1}{\pi} \sum_{i=1}^{4} \frac{\frac{\Gamma_i}{2} L_i + (\omega - \omega_i) K_i}{(\omega - \omega_i)^2 + \left(\frac{\Gamma_i}{2}\right)^2}$ with $W_i = \sqrt{L_i^2 + K_i^2}$.

The index labels the four transitions in the system:

C. Downing et al., Phys. Rev. Lett. 122, 057401 (2019)

C. Downing et al., Phys. Rev. Lett. 122, 057401 (2019)

Plasmonic nanocavities:

Acknowledgements:

- Rui-Qi Li,
- Álvaro Cuartero-González
- Charles Downing
- Camilo López-Carreño
- Fabrice Laussy
- Elena del Valle
- Francisco J. García Vidal

Thank you!

